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A Appendix to section 3: The laissez-faire equilibrium

A.1 The representative household

The representative household earns income from labor and asset holding which he spends on consumption and

the acquisition of new assets. The budget constraint is

ctL+ Ȧt = rtAt +

∫ 1

0

wXitLXitdi+ wY tLY t + wDtLDt, (A.1)

where At denotes asset holdings and wXit, wY t and wDt the wage rates for labor in intermediate production,

production of the consumption good and research. The interest rate is denoted by rt.

For notational convenience, we rewrite the utility function (1) as function of the pollution stock S rather

than environmental quality E, using (2):

U =

∞∫
0

e−ρt
(

σc
σc − 1

c
σc−1
σc

t − ψ σE
1− σE

S
1−σE
σE

t

)
Ldt (A.2)

The household maximizes (A.2) by choosing the paths for consumption, labor and asset holding while taking

pollution accumulation as given. He takes into account the budget-constraint (A.1) and must satisfy the no-

Ponzi condition

lim
t→∞

(
e−
∫ t
0
rvdvAt

)
≥ 0.

The current-value Hamiltonian function is:

H =

(
σc

σc − 1
c
σc−1
σc

t − ψ σE
1− σE

S
1−σE
σE

t

)
L

+vAt

(
rtAt +

1∫
0

wXitLXitdi+ wY tLY t + wDtLDt − ctL
)

+λLt

(
L−

(
1∫
0

LXitdi+ LY t + LDt

))
vAt is the current-value costate variable of assets A in t and λLt the Lagrange-multiplier of the constraint on

labor. The first-order conditions according to Pontryagin’s maximum principle are:

∂H

∂ct
= 0⇔ vAt = c

−1
σc
t (A.3)

∂H

∂LXit
= 0⇔ vAtwXit = λLt

∂H

∂LY t
= 0⇔ vAtwY t = λLt

∂H

∂LDt
= 0⇔ vAtwDt = λLt

∂H

∂At
= ρvAt − v̇At ⇔ vAtrt = ρvAt − v̇At (A.4)

∂H

∂vAt
= Ȧt ⇔ Ȧt = rtAt +

1∫
0

wXitLXitdi+ wY tLY t + wDtLDt − ctL (A.5)

∂H

∂λLt
= 0⇔ L =

1∫
0

LXitdi+ LY t + LDt
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The first-order conditions for the different types of labor can only be satisfied simultaneously, if firms in the

different sectors of intermediate production as well as firms in final good production and research all offer the

same wage. The household is then indifferent about the allocation of his labor supply.

The first-order condition for assets, At, can be restated as v̂At = ρ− rt. Log-differentiating both sides of the
first-order condition for consumption yields

−1
σc
ĉt = v̂At.

By substituting the expression for v̂At, we obtain the standard Euler-equation for per capita consumption:

ĉt = σc · (rt − ρ) (A.6)

A.2 Production

The production function for the consumption good is given by (5). Firms maximize profits over LY and Xi,

taking the wage rate wY t and the prices pit of the intermediates in sectors i ∈ [0, 1] as given. We normalize
the price of the consumption good to one. The first order condition for LY yields the implicit labor demand

function

wY t = (1− α)L−αY t
∫ 1

0

Xα
itQ

1−α
it di. (A.7)

From the first-order condition for Xi, the following demand function for intermediate i is derived:

Xd
it(pit) =

(
α

pit

) 1
1−α

QitLY t (A.8)

Each unit of the intermediate is produced with the production function (7):

Xit = ϕLXitQt

At equilibrium, the wage in intermediate production must be the same in every sector i, so that marginal costs

MCt = (1/ϕ) ·(wXt/Qt) are the same for goods with different productivity levels. On the other hand, final good
producers’demand is larger for more productive intermediates. It follows that only the owner of the patent for

the intermediate design with the highest productivity will be producing in sector i, as he can always choose a

price so that the firm with the next highest productivity level cannot break even. For the rest of this subsection,

the firm index j is therefore omitted.

The intermediate good in sector i is sold at a price pit to firms in the final good sector. The monopoly

producer chooses pit to maximize profits

πXit (pit) = (pit −MCt)Xit,

taking into account the demand function (A.8). The profit maximizing monopoly price is given by a constant

mark-up over marginal costs for all i1 :

pt =
1

αϕ
· (wXt/Qt)

1Monopoly pricing prevails under certain restrictions on model parameters which we derive in section A.3.
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The wage rate at equilibrium is obtained by substituting (A.8) in (A.7), using the fact that wages from inter-

mediate and final good production as well as research must be equal in equilibrium if all three types of labor

are to be provided by the household. The equilibrium wage is:

wXt = wY t = wDt = (1− α)1−αα2α (ϕ)αQt (A.9)

We then derive the quantity of intermediates produced in sector i as function of the amount of labor employed

in final good production, for any given sectoral level of productivity, from (A.8):

Xit =
α2

1− αϕLY tQit (A.10)

Monopoly profits in sector i in period t are:

πXit =
(1− α)1−α

α
α2(1+α)ϕαLY t ·Qit (A.11)

The aggregate quantity Xt of intermediates is

Xt =

∫ 1

0

Xitdi =
α2

(1− α)ϕLY tQt, (A.12)

where we used the definition
∫ 1
0
Qitdi := Qt of aggregate productivity.

A.3 Research

At time t, researcher j in sector i chooses lDijt, qijt and bijt to maximize expected profits from R&D. These

consist of the profit flow he expects to receive as a monopolist in intermediate production less of research labor

costs.

In every period and every sector, the exogenous arrival rate of innovations for the individual researcher is µ.

If researcher j succeeds in innovating, he changes the productivity level in sector i from Qit to (qijt + 1) ·Qit.
After the innovation, the productivity level remains constant until the next innovation occurs and the monopoly

producer is replaced by the new innovator.

The probability per unit of time of being replaced as the monopolist in sector i is exogenously given from

the perspective of researcher j in every period v > t and increases in the mass niv of research units active

in sector i at time v. More precisely, innovations in every sector i follow a Poisson-process with arrival-rate

µiv = µ · niv. The probability that the incumbent monopolist is still producing in period s > t is then given

by P (s) = e−
∫ s
t
µivdv. His profits in period s can be deduced from (A.11), substituting the after-innovation

productivity level (qijt + 1) ·Qit for Qit.
Expected discounted lifetime-profits are:

E [Vijt(qijt)] =
∫∞
t
πXijs (qijt) · P (s)e

−
∫ s
t
rvdvds (A.13)

=
(1− α)1−α

α
α2(1+α)ϕα (qijt + 1) ·Qit

∫∞
t
LY se

−
∫ s
t
(rv+µiv)dvds

Expected research profits are obtained by substracting research costs wDtlDijt:

E
[
πDijt(qijt, bijt)

]
= µE [Vijt(qijt)]− wDtlDijt(qijt, bijt) (A.14)
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Labor lDijt is given by (9) and the wage wDt by (A.9).

Researcher j maximizes (A.14) by choosing qijt and bijt. Reducing the pollution intensity of intermediates

by increasing Bi is costly but does not increase profits E [Vijt]. Therefore bijt = 0 for all i, j, t so that the

pollution intensity of intermediates is constant under laissez-faire. The first-order condition for qij can, after

simplification, be written as:

αµ
∫∞
t
LY se

−
∫ s
t
(rv+µiv)dvds− 2qijt = 0 (A.15)

The equation still depends on ni through the sectoral arrival rate µi. To determine qit and nit, it must be taken

into account that expected research profits in every sector i have to be zero at equilibrium. The zero profit

condition is: ∫∞
t
LY se

−
∫ s
t
(rv+µiv)dvds =

q2ijt + d

(1 + qijt)αµ
(A.16)

From (A.15) with (A.16), we determine the equilibrium value

qLFijt = qLF =
√
1 + d− 1 (A.17)

of qijt. qLF is constant over time and across sectors. It increases in the entry cost parameter d because less

entry lowers the probability of being replaced by the next innovator and therefore increases marginal profits

from productivity improvements2 .

Because qLF is constant, the integral
∫∞
t
LY se

−
∫ s
t
(rv+µiv)dvds on the left-hand side of the free-entry condition

(A.16) must be independent of t. Setting the time derivative of the integral to zero shows that the integral must

be equal to LY t
rt+µit

. We show in the next section, that LY t, rt and nit and thus the ratio LY t
rt+µit

are constant

even if the economy is not on a balanced growth path. After substituting LY t
rt+µit

for the integral in equation

(A.16) and the equilibrium value of q, (A.17), on the right-hand side, we can solve the free-entry condition for

nit:

nit = nt =
1

2

1√
1 + d− 1

· αLY t −
rt
µ
. (A.18)

A.4 General equilibrium

A.4.1 The market value of firms

Every unit of assets A in our model corresponds to a share of the market value of firms in the intermediate sector.

The total stock of the representative household’s assets at the beginning of period t must therefore equal the

aggregate market value of firms before innovation. In each sector i, only the firm with the highest productivity

level Qit is active in production. The before-innovation market value of this firm can be derived from (A.13),

substituting Qit for the after-innovation productivity level (qijt + 1) ·Qit. To obtain the aggregate market value
Vt of firms, we take the integral over all sectors and use (A.16) with (A.17) to replace

∫∞
t
LY se

−
∫ s
t
(rv+µiv)dvds:

Vt =

∫ 1

0

E [Vijt] di

= 2
(1− α)1−αα2αϕα

µ

(√
1 + d− 1

)
Qt (A.19)

The market value is proportional to the economy-wide productivity level Qt.
2 In the analysis, it has been assumed that the monopoly price is smaller than the limit price. This will be the case whenever

pmon <
(
qLF + 1

)
· (1/ϕ) (wXt/Qt) which is equivalent to d > 1

α2
− 1.
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A.4.2 Labor market clearing

We use (A.18) along with the labor market constraint (4) and equation (A.12) to find the allocation of labor

between final good production, intermediate production and research (LY t, LXt, LDt) and determine the mass

nt of research units in sector i for any given interest rate rt. The equilibrium nt is:

nt =

1
2L−

(
1
α +

α
1−α

) (√
1 + d− 1

)
rt
µ(

1−α
α + α

1−α

) (√
1 + d− 1

)
+ d

(A.20)

The mass of research units is the same in every sector. It increases in the arrival rate µ for innovations and

decreases in the interest rate rt and the fixed labor requirement d.

A.4.3 Equilibrium growth

Taking into account that nt and qLF are the same for all research sectors and using the definition of the aggregate

productivity index Q, the equation of motion (12) for Q simplifies to

Q̇t = µntq
LFQt.

Substituting (A.17) for qLF and (A.20) for nt, we obtain the productivity growth rate in period t as a function

of the interest rate rt:

Q̂t = µ

1
2L−

(
1
α +

α
1−α

) (√
1 + d− 1

)
rt
µ(

1−α
α + α

1−α

) (√
1 + d− 1

)
+ d

(√
1 + d− 1

)
(A.21)

It follows from (A.12) that Xt and Qt grow at the same rate at equilibrium because labor must be constant.

From the resource constraint, it is obvious that ct then also grows at the rate Q̂t. We set (A.21) equal to (A.6)

and solve for the equilibrium interest rate.

rLF =

1
2
1
σc
µL
(√
1 + d− 1

)
+
((

1−α
α + α

1−α

) (√
1 + d− 1

)
+ d
)
ρ(

1−α
α + α

1−α

) (√
1 + d− 1

)
+ d+ 1

σc

(
1
α +

α
1−α

) (√
1 + d− 1

)2 (A.22)

With rLF , equation (A.21) yields the equilibrium productivity growth rate

Q̂LF =

1
2µL−

(
1
α +

α
1−α

) (√
1 + d− 1

)
ρ(

1−α
α + α

1−α

) (√
1 + d− 1

)
+ d+ 1

σc

(
1
α +

α
1−α

) (√
1 + d− 1

)2 (√1 + d− 1) . (A.23)

Q̂LF is positive if and only if the representative household is suffi ciently patient, i.e., if and only if ρ < ρLF :=

1
2

µL

( 1α+
α

1−α )(
√
1+d−1)

.

The growth rates of c, X, Q and B are constant for any set of initial values for the state variables. Therefore

growth in c, X, Q and B is balanced without transitional dynamics.

It follows from (8) that the pollution stock must increase at the same rate Q̂LF as intermediate quantity,

productivity and consumption in the long run:

ŜLF∞ = Q̂LF

However, contrary to the growth rates of the other variables, the growth rate of the pollution stock does not

adjust to its balanced-growth level instantly if the relation between the state variables is not reconcilable with

constant growth of the pollution stock initially.
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A.5 Proof of proposition 1

1. Existence and Uniqueness: The path defined by initial states Q0, B0 and S0, the initial values X0

from (7) and c0 = Y0 from (6) as well as the growth rates ĉLF = Ŷ LF = X̂LF = Q̂LF , B̂LF = 0 in every

period t and ŜLFt from the pollution accumulation function (8) satisfies all the necessary conditions for an

equilibrium as defined in section 3 of the paper. If the initial valuesQ0, B0 and S0 for the state variables are

such that with X0 from (7), the pollution accumulation function (8) yields the balanced growth rate ŜLF∞

in t = 0, the path is characterized by balanced growth. The Hamiltonian function for the intertemporal

maximization problem of the representative household is strictly concave in consumption and linear in

all other variables. It follows that the household’s maximization problem has a unique solution. The

same is true for the static maximization problems in the R&D-sector as well as the production sectors

for the consumption good and intermediates, which are concave as well. The path described in the text

is therefore the unique laissez-faire equilibrium for ρLF < ρ < ρLF and, if the initial values Q0, B0 and

S0 for the state variables are reconcilable with balanced growth, the unique balanced-growth equilibrium.

For ρLF < ρLF ≤ ρ, it still needs to be shown that nt = nit = 0 for all t is an equilibrium. n = 0 implies

Q̂LF = ĉLF = 0. Setting ĉLF in the Euler-equation and solving for r yields r = ρ. For r = ρ, equation

(A.7) and the maximization problem in the R&D-sector yield wY t > wDt, which proves that n = 0 is an

equilibrium for this value of r.

2. Derivation of ρLF : The critical value ρLF := 1
2α(1 − α)

(
1− 1

σc

)
µL (1 + d)

−1/2 is derived from the

transversality condition lim
t→∞

(e−ρtvAtAt) = 0. Using (A.4), substituting At = A0e
Q̂L F ·t with A0 =

2 (1−α)
1−αα2αϕα

µ

(√
1 + d− 1

)
Q0 from (A.19) and taking into account that rt = rLF for all t shows that

the condition can be simplified to vA0A0 lim
t→∞

e−(r
L F−Q̂L F )t = 0. The transversality condition is satisfied if

and only if rLF − Q̂LF > 0. With (A.22) and (A.23), the critical value ρLF follows.

3. Welfare comparison: To prove that for convex disutility of pollution, a path without long-run growth

would be welfare-improving, consider the utility function (A.2). For convex disutility of pollution (σE <

1/2), 1−σEσE
is at least one while σc−1

σc
is smaller than one. Along the balanced-growth path, ŜLF = ŜLF∞ =

ĉLF . Instantaneous utility ut = σc
σc−1c

σc−1
σc

t − ψ σE
1−σE S

1−σE
σE

t converges to −φS(St) = −ψ σE
1−σE S

1−σE
σE

t and

declines persistently towards (−∞). The long-run growth rate is 1−σE
σE

ŜLF∞ . Now assume instead that

economic growth is given up in a period s: Consumption growth drops to zero instantly while pollution

growth converges to zero over time. Initially, there is a loss in per-period-utility compared to the laissez-

faire equilibrium. This loss is only transitory: In the long-run, the pollution stock is constant and so is

utility, while utility decreases in the laissez-faire equilibrium. Therefore, from a certain time onwards, not

growing yields a utility-gain in each period and the gain increases as t→∞. Because of the concavity of
the utility from consumption and convexity of the disutility from pollution, the transitional welfare-loss is

smaller, the later in time the regime-switch occurs and converges to zero as s→∞. Giving up economic
growth in the long-run therefore yields an increase in intertemporal welfare.

8



B Appendix to section 4: The Social Planner’s solution

B.1 Maximization problem

To see that the optimal qit and bit are the same for all sectors i, i.e. qit = qt and bit = bt, note that the social

planner chooses the step-size in every sector i so as to reach a given rate of change
·
Qt and

·
Bt in the respective

aggregate technology level with a minimum labor investment. From the equations of motion (12) and (13) for

Q and B together with the R&D-cost function (9) we can conclude that the marginal gain of an increase in bi

and qi, in terms of faster technological progress, and the additional amount of labor required increase in the

sectorial technology levels Qit and Bit in the same way. Therefore sectorial differences are irrelevant for the

optimal choice of qi and bi.

The dynamic optimization problem then depends on aggregate variables only: From (9), with
1∫
0

Qitdi = Qt,

1∫
0

Bitdi = Bt and nit = nt, the amount of labor allocated to research in period t is LDt = nt(q
2
t + b2t + d).

To produce Xt units of intermediates requires LXt = 1
ϕ
Xt
Qt
units of labor. The labor market constraint can be

written as

L =
1

ϕ

Xt

Qt
+ LY t + nt(q

2
t + b

2
t + d). (B.1)

The equations of motion (12) for Q and (13) for B are:

·
Qt = µnqtQt (B.2)

·
Bt = µnbtBt (B.3)

Given aggregate intermediate productionXt the decision overXit is static. The planner optimally allocates a

higher share of aggregate intermediate production to the sectors with higher productivity level so as to maximize

Yt. The optimal Xit is:

Xit = Xt
Qit
Qt

(B.4)

With (B.4), the aggregate resource constraint can be rewritten as:

L1−αY t Xα
t Q

1−α
t = ctL (B.5)

The dynamic maximization problem is solved by finding the optimal paths for Q, B, S, c, X, LY , n, q and

b subject to (8), (B.1), (B.2), (B.3) and the resource constraint (B.5). The current-value Hamiltonian is given

by:

H =

(
σc

σc − 1
c
σc−1
σc

t − ψ σE
1− σE

S
1−σE
σE

t

)
L

+vSt

(
Xt

Bt
− δSt

)
+vQtµntqtQt

+vBtµntbtBt

+λY t
(
Xα
t Q

1−α
t L1−αY t − ctL

)
+λLt(L−

1

ϕ

Xt

Qt
− LY t − nt(q2t + b2t + d))

9



where vSt, vQt and vBt are the shadow-prices of St, Qt and Bt respectively and λY t and λLt are Lagrange-

multipliers.

B.2 First-order conditions

The first-order conditions are:

∂H

∂ct
= 0⇔ λY t = c

−1/σc
t (B.6)

∂H

∂Xt
= 0⇔ vSt

Bt
+ λY tαX

α−1
t L1−αY t Q1−αt − λLt

1

ϕQt
= 0 (B.7)

∂H

∂qt
= 0⇔ vQtµntQt = 2λLtntqt (B.8)

∂H

∂bt
= 0⇔ vBtµntBt = 2λLtntbt (B.9)

∂H

∂nt
= 0⇔ vQtµqtQt + vBtµbtBt = λLt

(
q2t + b

2
t + d

)
(B.10)

∂H

∂LY t
= 0⇔ λY t(1− α)Xα

t Q
1−α
t L−αY t = λLt (B.11)

∂H

∂St
= ρvSt −

·
vSt ⇔ −ψS(1−2σE)/σEt L− δvSt = ρvSt −

·
vSt (B.12)

∂H

∂Qt
= ρvQt −

·
vQt

⇔ vQtµntqt + λY t(1− α)Xα
t Q
−α
t L1−αY t + λLt

Xt

ϕ

1

Q2t
= ρvQt −

·
vQt (B.13)

∂H

∂Bt
= ρvBt −

·
vBt ⇔ −vSt

Xt

B2t
+ vBtµntbt = ρvBt −

·
vBt (B.14)

∂H

∂vSt
=

·
St ⇔

Xt

Bt
− δSt =

·
St (B.15)

∂H

∂vQt
=

·
Qt ⇔ µntqtQt =

·
Qt (B.16)

∂H

∂vBt
=

·
Bt ⇔ µntbtBt =

·
Bt (B.17)

∂H

∂λY t
= 0⇔ Xα

t Q
1−α
t L1−αY t = ctL (B.18)

∂H

∂λLt
= 0⇔ L =

1

ϕ

Xt

Qt
+ LY t + nt(q

2
t + b

2
t + d) (B.19)

Further, the transversality conditions

lim
t→∞

(
e−ρtvQtQt

)
= 0

lim
t→∞

(
e−ρtvBtBt

)
= 0 (TVC)

lim
t→∞

(
e−ρtvStSt

)
= 0

and the non-negativity constraints

Qt, Bt, St, ct, Xt, LY t, nt ≥ 0, ∀t

must be satisfied.
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From the first-order conditions, four key equations crucial for the determination of the long-run optimum

are derived: The condition (16) for asymptotically-balanced growth in the text follows from the first-order

conditions for X and S: The first-order condition (B.7) for X yields a relation v̂S∞ = (1− 1/σc) ĉ∞+B̂∞−X̂∞
between the growth rates of the marginal utility c−1/σct of consumption and the shadow price vS of pollution

for t → ∞. From the first-order condition (B.12) for the pollution stock, it follows that along an ABG

path, the ratio S(1−2σE)/σEt /vSt must be constant for vS to grow at a constant rate. In the long run, vS

must therefore grow at the same rate as the (instantaneous) marginal disutility ψS(1−2σE)/σE of pollution,

i.e. v̂S∞ = ((1− 2σE) /σE) Ŝ∞. Setting this expression for v̂S∞ equal with the one obtained from (B.7) and

rearranging, the following relation between long-run pollution growth and consumption growth is derived:

σc − 1
σc

ĉ∞ =
1− σE
σE

Ŝ∞ +
(
X̂∞ − B̂∞ − Ŝ∞

)
(16G)

Note that (16G) is a more general form of (16) in the proof of lemma 2 in the paper. In equation (16), it has

been taken into account that Ŝ∞ = X̂∞ − B̂∞ if condition (15) is satisfied.

We are interested in solution candidates with n∞ > 0. Solving (B.8) and (B.9) for vQ and vB respectively,

substituting in the first-order condition (B.10) for n and taking the limit for t→∞ yields

q2∞ + b
2
∞ = d (B.20)

Condition (B.20) is an indifference condition. It guarantees that the social planner is indifferent between all

possible values for n.

Dividing by vQt, setting t =∞ and rearranging, (B.13) can be written as:

(1/σc) ĉ∞ + ρ =
1

2
µq−1∞

(
LY∞ +

1

ϕ

(
X

Q

)
∞

)
+ αX̂∞ + (1− α)µn∞q∞ (B.21)

Equation (B.21) is a version of the consumption Euler-equation, where we replaced the shadow-prices and

Lagrange-multipliers as well as their growth rates using (B.8), (B.11) and (B.6).

Both research directions, that is, increasing Q and increasing B, must yield the same social net return. We

manipulate the first-order condition (B.14) for B similarly to the one for Q, using (B.9) as well as the expression

vSt =
(
λLt

1
ϕQt
− λY tαXα−1

t L1−αY t Q1−αt

)
Bt from (B.7), and equations (B.11) and (B.6). Setting equal the right-

hand sides of (B.21) and the modified first-order condition for B, we obtain the research-arbitrage condition

1

2
µq−1∞

(
LY∞ +

1

ϕ

(
X

Q

)
∞

)
=
1

2
µb−1∞

(
α

1− αLY∞ −
1

ϕ

(
X

Q

)
∞

)
. (B.22)

B.3 Solution with Ŝ∞ > (−δ)

B.3.1 Long-run growth

In this subsection, long-run growth rates in the social optimum are derived for the case where model parameters

are such that Ŝ∞ > (−δ). First, we consider long-run optimal growth for parameter constellations reconcilable
with condition (14) in the paper, i.e. parameter constellations for which the long-run optimal solution is

characterized by deceleration. In this case, Ŝ∞ > (−δ) is guaranteed by condition (15) in the paper. Afterwards,
we study the case where condition (14) is not satisfied and characterize the parameter range for which Ŝ∞ > (−δ)
is true in this case.
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ABG with deceleration (X̂∞ < Q̂∞) If growth rates are to be constant asymptotically, equation (B.22)

requires intermediate quantity in effi ciency units, more precisely the ratio (X/Q)∞, to be constant in the limit

as well.

A balanced growth path, along which productivity and cleanliness grow at constant rates for all t, not only

asymptotically, must be characterized by a strictly positive (X/Q)∞
3 . There must therefore be equal growth

in intermediate quantity, productivity and (from the resource constraint) also consumption. Further, as we

consider parameter constellations with Ŝ∞ > (−δ), the relation Ŝ∞ = X̂∞ − B̂∞ can be used. Equation (16G)

then equals (16) in the paper and yields a ratio B̂∞/Q̂∞:

B̂∞/Q̂∞ = 1−
(σc − 1) /σc
(1− σE) /σE

. (B.23)

If α/(1 − α) < 1 − (σc−1)/σc
(1−σE)/σE (see condition (14)), a balanced growth solution to the social planner’s problem

does not exist, because the ratio B̂∞/Q̂∞ in (B.23) is not reconcilable with equation (B.22) for any nonnegative

(X/Q)∞. As X/Q < 0 has no sensible interpretation, the optimal solution is to let X/Q converge to zero

asymptotically by choosing X̂∞ < Q̂∞. According to (B.22), the optimal ratio B̂∞/Q̂∞ corresponds to

B̂∞/Q̂∞ =
α

1− α . (B.24)

With the definition of the direction of technical change, it follows straigthtforwardly that technical change is

green (productivity-oriented) if and only if α > 1/2 (α < 1/2).

To compute the relation between the growth rates X̂∞ and Q̂∞, we use (16G), substituting X̂∞ − B̂∞ =

X̂∞ − α
1−α Q̂∞ for Ŝ∞ and αX̂∞ + (1− α) Q̂∞ from the resource constraint for ĉ∞. After some manipulation,

we obtain:

X̂∞ =
1 +

(
α
1−α

)2
−
(
1− (σc−1)/σc

(1−σE)/σE −
α
1−α

)
1 + α

1−α

(
1− (σc−1)/σc

(1−σE)/σE

) Q̂∞ (B.25)

Under condition (14) in the paper ( α
1−α < 1−

(σc−1)/σc
(1−σE)/σE ), it is obvious that X̂∞ ≤ Q̂∞ where equality is given

if and only if Q̂∞ = 0.

We substitute X̂∞ from (B.25) into ĉ∞ = αX̂∞ + (1− α) Q̂∞ to find ĉ∞ as function of Q̂∞:

ĉ∞ =
1 +

(
α
1−α

)2
1 + α

1−α

(
1− (σc−1)/σc

(1−σE)/σE

) Q̂∞ (B.26)

Given condition (14), ĉ∞ ≤ Q̂∞ where equality is given if and only if Q̂∞ = 0. Further, note that for any

Q̂∞ > 0, X̂∞ < ĉ∞.

To derive Q̂∞, we need to find n∞ and q∞. The solution for q∞ (and also b∞) follows directly from the

indifference equation (B.20) together with (B.24):

q∞ =

(
1 +

(
α

1− α

)2)−1/2
d1/2 (B.27)

b∞ =
α

1− α

(
1 +

(
α

1− α

)2)−1/2
d1/2 (B.28)

3On a balanced growth path, (X/Q)∞ = 0 implies Xt/Qt = 0 for all t. This is only possible if Xt = ct = 0 for all t which

cannot be an optimal path for X because the utility function satisfies the Inada-conditions for ct.
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We determine n∞ from the consumption Euler-equation (B.21), where we replace LY∞ from the labor market

constraint (B.19). Further, we take into account (B.25) and (B.26) as well as (X/Q)∞ = 0. With the solution

n∞ =
1
2µq

−1
∞ L− ρd− (1−1/σc)

(
1+( α

1−α )
2
)

1+ α
1−α

(
1− (σc−1)/σc

(1−σE)/σE

)q2∞
µq−1∞

and q∞ from (B.27) we find that

Q̂∞ = µn∞q∞

=
1 + α

1−α

(
1− (σc−1)/σc

(1−σE)/σE

)
1/σc +

α
1−α

(
1− (σc−1)/σc

(1−σE)/σE

) 1

1 +
(

α
1−α

)2
1
2

(
1 +

(
α

1− α

)2)1/2
d−1/2µL− ρ

 . (B.29)

With (B.29), the growth rates of intermediate cleanliness, intermediate quantity and consumption (and

GDP) can be found from (B.24), (B.25) and (B.26) respectively.

B̂∞ =
1 + α

1−α

(
1− (σc−1)/σc

(1−σE)/σE

)
1/σc +

α
1−α

(
1− (σc−1)/σc

(1−σE)/σE

) α
1−α

1 +
(

α
1−α

)2
1
2

(
1 +

(
α

1− α

)2)1/2
d−1/2µL− ρ

 (B.30)

X̂∞ =
1 + α

1−α
2 −

(
1− (σc−1)/σc

(1−σE)/σE −
α
1−α

)
1/σc +

α
1−α

(
1− (σc−1)/σc

(1−σE)/σE

) 1

1 +
(

α
1−α

)2
1
2

(
1 +

(
α

1− α

)2)1/2
d−1/2µL− ρ

 (B.31)

ĉ∞ = Ŷ∞ =
1

1/σc +
α
1−α

(
1− (σc−1)/σc

(1−σE)/σE

)
1
2

(
1 +

(
α

1− α

)2)1/2
d−1/2µL− ρ

 (B.32)

From (16G), the growth rate of the pollution stock is:

Ŝ∞ =

(σc−1)/σc
(1−σE)/σE

1/σc +
α
1−α

(
1− (σc−1)/σc

(1−σE)/σE

) ·
1
2

√
1 +

(
α

1− α

)2
d−1/2µL− ρ

 . (B.33)

Balanced growth (X̂∞ = Q̂∞) If α
1−α > 1 − (σc−1)/σc

(1−σE)/σE so that condition (14) is not satisfied, the ratio of

green to productivity-oriented research is given by (B.23):

B̂∞/Q̂∞ = 1−
(σc − 1) /σc
(1− σE) /σE

For convex disutility of pollution (σE < 1/2), (σc−1)/σc
(1−σE)/σE is smaller than one. Therefore 1 − (σc−1)/σc

(1−σE)/σE > 0

and there is green innovation in the long-run optimal solution (B̂∞ > 0) whenever there is productivity growth

(Q̂∞ > 0).

To derive the long-run optimal growth rate of Q, we proceed in the same way as in the previous paragraph.

We first use the indifference condition (B.20) with (B.23) to determine q∞ (and thereby also b∞):

q∞ =

(
1 +

(
1− (σc − 1) /σc

(1− σE) /σE

)2)−1/2
· d1/2

b∞ =

(
1− (σc − 1) /σc

(1− σE) /σE

)(
1 +

(
1− (σc − 1) /σc

(1− σE) /σE

)2)−1/2
· d1/2
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We then solve the Euler-equation (B.21) for n∞ once more, making use of (B.20) and ĉ∞ = X̂∞ = Q̂∞ =

µn∞q∞.

n∞ =
1
2µq

−1
∞ L− ρ

(d− (1− 1/σc) q2∞)µq−1∞
.

With the solutions for n∞ and q∞ we find that the growth rate of productivity Q is

Q̂∞ = µn∞q∞

=
1

1/σc +
(
1− (σc−1)/σc

(1−σE)/σE

)2
1
2

(
1 +

(
1− (σc − 1) /σc

(1− σE) /σE

)2)1/2
d−1/2µL− ρ

 . (B.34)

The growth rate of intermediate cleanliness is given by (B.23). We derive the pollution growth rate from

(16G):

Ŝ∞ =
(σc − 1) /σc
(1− σE) /σE

ĉ∞

=

(σc−1)/σc
(1−σE)/σE

1/σc +
(
1− (σc−1)/σc

(1−σE)/σE

)2 ·
1
2

√
1 +

(
1− (σc − 1) /σc

(1− σE) /σE

)2
d−1/2µL− ρ

 (B.35)

B.3.2 Boundary values for the rate of time preference

It follows from (B.29) and (B.34) that Q̂∞ > 0 which implies that ĉ∞ is positive, if and only if:

ρ < ρ :=

{ 1
2

(
1 +

(
α
1−α

)2)1/2
d−1/2µL, α

1−α < 1−
(σc−1)/σc
(1−σE)/σE

1
2

(
1 +

(
1− (σc−1)/σc

(1−σE)/σE

)2)1/2
d−1/2µL, α

1−α > 1−
(σc−1)/σc
(1−σE)/σE

(B.36)

Note that the upper bound for ρ does not depend on the rate of natural regeneration, δ, or the weight ψ of the

pollution stock in utility.

Ŝ∞ > (−δ) is satisfied for any ρ < ρ whenever σc > 1 so that Ŝ∞ > 0. The condition on the rate of time

preference needed to ensure Ŝ∞ > (−δ) for σc < 1 follows from (B.33) and (B.35). It is given by:

ρ > ρdelta :=

{ 1
2

(
1 +

(
α
1−α

)2)1/2
d−1/2µL− κ2 (1−σE)/σE(1−σc)/σc δ,

α
1−α < 1−

(σc−1)/σc
(1−σE)/σE , σc < 1

1
2

(
1 +

(
1− (σc−1)/σc

(1−σE)/σE

)2)1/2
d−1/2µL− κ1 (1−σE)/σE(1−σc)/σc δ,

α
1−α > 1−

(σc−1)/σc
(1−σE)/σE , σc < 1

(B.37)

κ1 =
1
σc
+
(
1− (σc−1)/σc

(1−σE)/σE

)2
and κ2 = 1

σc
+ α

1−α

(
1− (σc−1)/σc

(1−σE)/σE

)
are positive constants. Note that under

condition (14) (for α
1−α < 1−

(σc−1)/σc
(1−σE)/σE ), the condition corresponds to condition (15) in the paper.

The transversality conditions in (TVC) require:

ρ > ρTVC :=

{ 1
2

1−1/σc
1+ α

1−α

(
1− (σc−1)/σc

(1−σE)/σE

) (1 + ( α
1−α

)2)1/2
d−1/2µL, α

1−α < 1−
(σc−1)/σc
(1−σE)/σE

1
2

1−1/σc

1+

(
1− (σc−1)/σc

(1−σE)/σE

)2
(
1 +

(
1− (σc−1)/σc

(1−σE)/σE

)2)1/2
d−1/2µL, α

1−α > 1−
(σc−1)/σc
(1−σE)/σE

(B.38)
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Note that if σc < 1, condition (B.38) is satisfied for any ρ > 0. From (B.37) and (B.38), we define the following

lower bound for ρ:

ρ :=

{
ρdelta , σc < 1
ρTVC , σc > 1

B.3.3 Proof of uniqueness

The long-run growth path derived above for α
1−α > 1−

(σc−1)/σc
(1−σE)/σE and

α
1−α < 1−

(σc−1)/σc
(1−σE)/σE respectively satisfies

all the necessary conditions, given the parameter restriction ρ < ρ < ρ. It still has to be shown that the solution

is unique. The only other solution candidate which has so far been excluded by the assumption of an interior

solution is a solution with n∞ = 0. To prove that n∞ = 0 cannot be an optimal choice for n under the parameter

restriction ρ < ρ, we show that, given n∞ = 0 and ρ < ρ, the partial derivative of the Hamiltonian-function

with respect to n is positive in the limit, i.e. lim
t→∞

∂H
∂n |n∞=0> 0. This condition is satisfied, if and only if

vQ∞µq∞Q∞ + vB∞µb∞B∞ > λL∞
(
q2∞ + b

2
∞ + d

)
. (B.39)

Given n∞ = 0, the first-order conditions (B.8) and (B.9) for q and b are always satisfied and the social planner

is indifferent between any levels of q∞ and b∞. Because every choice of q∞ and b∞ must yield the same level

of intertemporal welfare, any particular pair can be selected as solution. We define the limits lim
n∞→0

q(n∞) and

lim
n∞→0

b(n∞) obtained from the first-order conditions given n∞ > 0 as the solutions in this case. The limit for q

can be derived by solving the Euler-equation (B.21) for q instead of n. The limit for b follows from (B.23) or

(B.24) respectively. It differs between the case with deceleration and the balanced-growth case.

ABG with deceleration Substituting the labor market constraint (B.1) into the Euler-equation (B.21)

and taking the limit for n∞ → 0 on both sides yields lim
n∞→0

q(n∞) =
µ
2L/ρ. Accordingly, the limit for b is

lim
n∞→0

b(n∞) =
α
1−α

µ
2L/ρ from (B.24). Further, we know that lim

n∞→0
X
Q (n∞) = 0.

We then determine the values of the shadow prices vQ∞ and vB∞ for n∞ = 0 from (B.13) and (B.14) with

(B.7) and (B.19), taking into account that X, c, Q, B and S are constant in the long run. We obtain the

expressions vQ∞ = λL∞Q
−1
∞

(
LY∞ +

1
ϕ

(
X
Q

)
∞

)
1
ρ and vB∞ = λL∞B

−1
∞

(
α
1−αLY∞ −

1
ϕ

(
X
Q

)
∞

)
1
ρ .

Substituting vQ∞, vB∞, lim
n∞→0

q(n∞), lim
n∞→0

b(n∞) and lim
n∞→0

X
Q (n∞) as well as LY∞ = L− 1

ϕ

(
X
Q

)
∞
in (B.39)

and simplifying yields

lim
t→∞

∂H

∂n
> 0

⇔ ρ <
1

2

(
1 +

(
α

1− α

)2)1/2
d−1/2µL.

Because 1
2

(
1 +

(
α
1−α

)2)1/2
d−1/2µL is the upper limit of ρ for α

1−α < 1−
(σc−1)/σc
(1−σE)/σE , we have shown that given

ρ < ρ and α
1−α < 1−

(σc−1)/σc
(1−σE)/σE , no solution to the set of necessary first-order conditions with n∞ = 0 exists.
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Balanced growth In the balanced-growth case, it can readily be verified from (B.21) that lim
n∞→0

q(n∞) =

µ
2L/ρ as before. The limit for b changes to lim

n∞→0
b(n∞) =

(
1− (σc−1)/σc

(1−σE)/σE

)
µ
2L/ρ. The research-arbitrage

condition (B.22) requires that in the limit, X/Q equals lim
n∞→0

X
Q (n∞) = (1− α)ϕ

(
α
1−α −

b∞
q∞

)
L.

Proceeding as in the case with deceleration, we find that lim
t→∞

∂H
∂n > 0⇔ ρ < 1

2

(
1 +

(
1− (σc−1)/σc

(1−σE)/σE

)2)1/2
d−1/2µL.

The right-hand side corresponds to the upper bound ρ for α
1−α > 1 − (σc−1)/σc

(1−σE)/σE . Again, limt→∞
∂H
∂n > 0 proves

that n∞ = 0 cannot be an optimal solution in the given parameter range.

B.4 Solution with Ŝ∞ = (−δ)

This section presents long-run optimal growth rates in case σc < 1 if condition (B.37) is not satisfied, so that

Ŝ∞ = (−δ). As for Ŝ∞ > (−δ), the optimal solution may be characterized by equal growth in c, Y , X and

Q or by deceleration, depending on the parameter constellation. However, even if there is no deceleration

(X̂∞ = Q̂∞), growth is only asymptotically balanced because the pollution growth rate can only converge

towards (−δ) for t→∞.

ABG with deceleration

If (X/Q)∞ = 0 asymptotically, equation (B.22) again yields the ratio

B̂∞/Q̂∞ =
α

1− α

from (B.24). From (B.20) and B̂∞/Q̂∞ = α
1−α , we obtain the same solutions for q and b as in (B.27) and (B.28).

With Ŝ∞ = (−δ), the relation between X̂∞ and Q̂∞ differs from the one in (B.25): Substituting ĉ∞ =

αX̂∞ + (1− α) Q̂∞, B̂∞ = α
1−α Q̂∞ as well as Ŝ∞ = (−δ) in the ABG-condition (16G), we obtain the following

expression for X̂∞ as function of Q̂∞:

X̂∞ =
1

1− α
(1− 2σE) /σE
α
1−α (1/σc) + 1

δ +
1 +

(
α
1−α

)2
−
(
1/σc − α

1−α

)
α
1−α (1/σc) + 1

Q̂∞. (B.40)

A necessary condition for deceleration is
1+( α

1−α )
2−(1/σc− α

1−α )
α

1−α (1/σc)+1
< 1 which is equivalent to 1/σc > α

1−α . Further,

because 1
1−α

(1−2σE)/σE
α

1−α (1/σc)+1
δ > 0, Q̂∞ must be suffi ciently large, i.e.

Q̂∞ >
(1− 2σE) /σE
(1/σc)− α

1−α
δ.

which implies an upper bound for the rate of time preference. Note that condition (14) which is necessary and

suffi cient for deceleration if Ŝ∞ > (−δ) is suffi cient but not necessary for deceleration here: 1− (σC−1)/σC
(1−σE)/σE < 1/σC

if σC < 1 and the disutility of pollution is convex (σE < 1/2). Therefore α
1−α < 1 − (σC−1)/σC

(1−σE)/σE is a stricter

condition than α
1−α < 1/σC . Further, the condition Ŝ∞ = (−δ) can, because of (16G), be expressed as a

condition on ĉ∞, i.e. ĉ∞ ≥ (1−σE)/σE
(1−σC)/σC δ. Given

α
1−α < 1/σC and

α
1−α < 1−

(σC−1)/σC
(1−σE)/σE , the condition for Ŝ∞ to

converge to (−δ), which is ĉ∞ ≥ (1−σE)/σE
(1−σC)/σC δ, implies ĉ∞ > (1−2σE)/σE

(1/σC)− α
1−α

δ which in turn, as ĉ∞ ≤ Q̂∞, guarantees
that Q̂∞ > (1−2σE)/σE

(1/σC)− α
1−α

δ.
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With X̂∞ from (B.40), ĉ∞ = αX̂∞ + (1− α) Q̂∞ yields

ĉ∞ =
α

1− α
(1− 2σE) /σE
α
1−α (1/σc) + 1

δ +
1 +

(
α
1−α

)2
α
1−α (1/σc) + 1

Q̂∞. (B.41)

In the same way as before, we derive n∞ from the Euler-equation. The solution is:

n∞ =

1
2µq

−1
∞ L− ρ+ (1− 1/σc) α

1−α
(1−2σE)/σE
α

1−α (1/σc)+1
δ(

d−
(1−1/σc)

(
1+( α

1−α )
2
)

α
1−α (1/σc)+1

q2∞

)
µq−1∞

And the productivity growth rate is given by:

Q̂∞ = µn∞q∞

= (1− α)
(

α

1− α + σc
)(

1 +

(
α

1− α

)2)−1

·

1
2

(
1 +

(
α

1− α

)2)1/2
d−1/2µL− ρ+ (1− 1/σc)

α

1− α
(1− 2σE) /σE
α
1−α (1/σc) + 1

δ

 . (B.42)

The growth rate of intermediate cleanliness is the same as in (B.30). The growth rates of intermediate

quantity and consumption (and GDP) follow from (B.40) and (B.41).

X̂∞ =
1

1− α
(1− 2σE) /σE
α
1−α (1/σc) + 1

δ + (1− α)σc
1 +

(
α
1−α

)2
−
(
1/σc − α

1−α

)
1 +

(
α
1−α

)2 (B.43)

·

1
2

(
1 +

(
α

1− α

)2)1/2
d−1/2µL− ρ+ (1− 1/σc)

α

1− α
(1− 2σE) /σE
α
1−α (1/σc) + 1

δ



ĉ∞ = Ŷ∞ =
α

1− α
(1− 2σE) /σE
α
1−α (1/σc) + 1

δ + (1− α)σc (B.44)

·

1
2

(
1 +

(
α

1− α

)2)1/2
d−1/2µL− ρ+ (1− 1/σc)

α

1− α
(1− 2σE) /σE
α
1−α (1/σc) + 1

δ


ABG without deceleration

Without deceleration, it still holds that ĉ∞ = X̂∞ = Q̂∞. Substituting ĉ∞ = X̂∞ = Q̂∞ into the ABG-condition

(16G) with Ŝ∞ = (−δ) and solving for B̂∞, we obtain

B̂∞ = (1/σc) Q̂∞ − ((1− 2σE) /σE) δ. (B.45)

As σc < 1, the ratio B̂∞/Q̂∞ in (B.45) is larger than B̂∞/Q̂∞ = 1− (σc−1)/σc
(1−σE)/σE in (B.23) for every constellation

of parameters that satisfies the condition Q̂∞ (= ĉ∞) >
(1−σE)/σE
(1−σc)/σc δ for Ŝ∞ = (−δ). It can be verified that

B̂∞/Q̂∞ < α/(1− α), so that the research arbitrage equation is satisfied, if either (1/σc) < α
1−α or if (1/σc) >

α
1−α and at the same time Q̂∞ > (1−2σE)/σE

(1/σc)− α
1−α

δ.
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Using the indifference condition (B.20), q2∞ + b
2
∞ = d, to express b∞ as function of q∞, equation (B.45) can

also be written as

µn∞
√
d− q2∞ = (1/σc)µn∞q∞ − ((1− 2σE) /σE) δ (B.46)

The consumption Euler-equation (B.21) does not depend on Ŝ∞ or the ratio B̂∞/Q̂∞. It yields the same

relation

n∞ =
1
2µq

−1
∞ L− ρ

(d− (1− 1/σc) q2∞)µ
q∞ (B.47)

between n∞ and q∞ as in the case without deceleration and Ŝ∞ > (−δ).
Equations (B.46) and (B.47) form a system of two equations in the two unknowns q∞ and n∞. However,

after substituting (B.47) for n∞ in (B.46), it is not possible to solve (B.46) for q∞ analytically due to the

mixture of exponents.

Depending on parameters, there may be a unique solution, two solutions or no solution. To prove this claim,

consider equation (B.46), where n∞ = n∞(q∞) is given by (B.47). We divide both sides of equation (B.46) by

n∞(q∞):

µ
√
d− q2∞ = (1/σc)µq∞ − n−1∞ (q∞) ((1− 2σE) /σE) δ

The left-hand side of the modified equation is non-negative as well as decreasing and concave in q∞. The right-

hand side is positive whenever the condition for Ŝ∞ = (−δ) is satisfied, because µn∞q∞ = Q̂∞ > (1−2σE)/σE
1/σc

δ

is a weaker condition than Q̂∞ > (1−σE)/σE
(1−σc)/σc δ. For σc < 1, in the relevant range with Q̂∞ > (1−σE)/σE

(1−σc)/σc δ,

the right-hand side is concave and first increasing, then decreasing in q∞ because the first term is linear and

n−1∞ (q∞) is decreasing and convex in q∞ whenever σc < 1.

A unique solution exists if and only if the value q∞ =
√
d, which sets the left-hand side of the equation

to zero, lies between the two zeros of the right-hand side. An equivalent condition is that at q∞ =
√
d, the

right-hand side is positive. This is true if and only if

ρ <
1

2
µd−1/2L− ((1− 2σE) /σE) δ.

B.5 Proof of corollary 2

B.5.1 Solution

Without the pollution externality, utility depends on consumption only:

U =

∫ ∞
t=0

e−ρt
σc

σc − 1
c
σc−1
σc

t Ldt

The first-order condition for S becomes

∂H

∂St
= ρvSt −

·
vSt ⇔ −δvSt = ρvSt −

·
vSt. (B.48)

This condition can only be satisfied if vSt = 0 and
·
vSt = 0 for all t. The second solution v̂1t = ρ + δ violates

the transversality condition for S for all possible long-run growth rates Ŝ∞ ≥ −δ.
The first-order condition (B.7) for Xt then directly yields aggregate intermediate production

Xt =
α

(1− α)ϕQtLY t (B.49)
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for any given labor supply LY t and productivity level Qt.

With vSt = 0, it follows from the first-order condition

vBtµntbt = ρvBt −
·
vBt

for Bt that vBt = 0 and
·
vBt = 0 for all t4 .

If vBt = 0, it is optimal to set bt = 0 for all t as can be seen from (B.9). Then the optimal long-run level of q is

qψ=0∞ =
√
d (B.50)

from (B.20).

As LY∞ is constant, we conclude from (B.49) and the resource constraint that X̂∞ = ĉ∞ = Ŷ∞ = Q̂∞. We

can still determine n∞ from (B.21) using X̂∞ = ĉ∞ = Q̂∞, qψ=0∞ =
√
d, the labor market constraint (B.19) and

(B.20):

nψ=0∞ =
σc√
dµ

(
1

2
µd−1/2L− ρ

)
The consumption growth rate of the economy is:

ĉψ=0∞ = Q̂ψ=0∞ = µn∞q∞

=
1

1/σc

(
1

2
µd−1/2L− ρ

)
(B.51)

B.5.2 Comparison to the solution in theorem 1

(i) Parameter restriction for positive long-run growth: Given conditions (14) and (15), the upper

bound for ρ in the baseline model with ψ > 0 is ρ = 1
2µ

(
1 +

(
α
1−α

)2)1/2
d−1/2L. From (B.51), it follows

that the upper bound for positive long-run growth with ψ = 0 is ρψ=0 = 1
2µd

−1/2L. Comparison of ρ and

ρψ=0 shows that positive consumption growth is optimal for larger values of the rate of time preference

when ψ > 0 because
(
1 +

(
α
1−α

)2)1/2
> 1.

(ii) Comparison of ĉ∞: Given conditions (14) and (15), the long-run consumption growth rate in the

baseline model is given by (B.32). Comparison of (B.32) to the growth rate in (B.51) proves the claim in

the theorem.

(iii) Influence of the size of ψ: From the previous subsections, it is obvious that long-run growth rates are

not affected by the parameter ψ.

Note that the validity of results is not limited to the parameter range with deceleration and Ŝ∞ > (−δ)
which is considered in the theorem.

4Again, there is a second solution, v̂Bt = ρ − µntbt. However, like the non-zero solution for vSt, it does not satisfy the

transversality condition for the associated state-variable (B).
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C Appendix to section 5: The model with a non-renewable resource

C.1 The laissez-faire equilibrium

C.1.1 The representative household

As we assume that the representative household owns the resource stock, the budget constraint in period t

becomes

Ct +
·
At = rtAt + wY tLY t + wDtLDt + pRtRt.

The household maximizes intertemporal utility subject to the budget constraint and the natural resource con-

straint (18). Denote the Lagrange-multiplier for the natural resource constraint by λRt. Two new conditions

are added to the set of necessary first-order conditions:

∂H

∂Rt
= 0⇔ vAtpRt = λRt (C.1)

∂H

∂λRt
≤ 0⇔

∫ ∞
0

Rtdt ≤ F0 λRt ≥ 0 λRt

(
F0 −

∫ ∞
0

Rtdt

)
= 0 (C.2)

The new first-order condition (C.2) for λRt together with the first-order condition (C.1) for Rt states that either

the resource stock is fully exhausted asymptotically, or the price pRt of the resource must be zero for all t: If∫∞
0
Rtdt < F0, λRt must be zero by the complementary-slackness condition λRt

(
F0 −

∫∞
0
Rtdt

)
= 0. But if

λRt = 0 for some t < ∞, then λRt = 0 for all t < ∞ since λRt = 0 can only be satisfied if λ̃R = 0. By (C.1),

it follows that pRt = 0 for all t. We conclude that in the laissez-faire equilibrium, the resource stock is always

fully depleted asymptotically and λRt > 0.

It can be shown that the standard consumption Euler-equation (A.6),

ĉt = σc · (rt − ρ) ,

still holds.

Using λ̂R = ρ, the first-order condition for Rt together with the first-order-condition for At (equation (A.4))

yields the Hotelling rule:

p̂Rt = λ̂R − v̂At

= ρ− (ρ− rt)

= rt (C.3)

C.1.2 Production

The demand function (A.8) for intermediate goods remains unchanged vis-à-vis the baseline model:

Xd
it(pit, LY t, Qit) =

(
α

pit

) 1
1−α

QitLY t

In the profit function

πXit = (pit −MCt)Xit,
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it has to be taken into account that marginal production costs correspond to the price pRt for the resource

instead of marginal labor costs. Marginal costs are still the same for every firm j so that again, only the firm

with the latest patent will be active in production. The profit-maximizing monopoly price, given by the constant

mark-up 1
α over marginal costs, is

pit = pt =
1

α
· pRt (C.4)

C.1.3 Resource market clearing

Because the resource stock is fully exhausted, total resource demand
∫∞
0
Rtdt =

∫∞
0
Xd
t dt must equal total

supply F0. Integrating (A.8) over all sectors i and using the Hotelling-rule to describe the development of the

resource price, the condition can be written as(
α2

pR0

) 1
1−α

∫ ∞
0

e−
1

1−α
∫ t
0
rvdvLY tQtdt = F0. (C.5)

Given the paths for productivity Q, labor LY and the interest rate, condition (C.5) fixes the resource price at

t = 0 for any given initial resource stock F0. It thereby determines the level of the path {pRt}∞0 . The more
resource-abundant the economy is, the smaller is the resource price in every period t.

C.1.4 Proposition C.1: Effects of resource scarcity on the laissez-faire equilibrium

The resource price increases over time according to the Hotelling rule (C.3). Through the increasing resource

price, resource scarcity leads to a restriction in the growth rate of intermediate quantity below productivity

growth along the balanced growth path. More precisely, intermediate quantity must fall over time according to

lemma 3 in the paper. The increasing resource price leads to persistent quantity degrowth. While this is obvious,

it is interesting to study the impact of resource scarcity on the laissez-faire equilibrium more extensively.

For any size of the finite initial resource stock F0, the fact that the resource becomes scarcer over time (the

finiteness of the resource) is reflected in the positive growth rate of the resource price. Further, resource scarcity

affects economic variables through the size of the initial stock F0, which has a negative influence on the level of

the resource price (see equation (C.9)).

While the size of F0 is exogenous, the growth rate of the resource price is endogenous. Still, it is possible to

single out the effects not only of the size of F0 but also the impact of the growing resource price on equilibrium

growth and the levels of technology, production, consumption and pollution:

Proposition C.1 Effects of resource scarcity on the laissez-faire equilibrium

(a) Growth effects: The introduction of a finite initial resource stock F0 <∞, through an increasing resource
price, (i) leads to persistent quantity degrowth (ii) unambiguously decreases the equilibrium growth rates of Y

and c as well as the long-run growth rate of S, (iii) lowers (increases) the productivity growth rate whenever

σc > 1 (σc < 1) (given it is positive), and (iv) restricts the parameter range for which there is positive growth

in per capita consumption.

(b) Level eff ects: The size of the initial resource stock F0 (i) does not affect the paths of the technology stocks Q

and B. However, the smaller F0, (ii) the larger is the level of the resource price along the entire equilibrium path
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and (iii) the smaller are, accordingly, the levels of intermediate production, output and per capita consumption

in every period t and the smaller the pollution level in every period t > 0.

Proof. See appendix C.1.5.

The growth rate of the resource price has two opposing effects on the productivity growth rate, Q̂LF,R : On

the one hand, the growing price depresses monopoly profits from intermediate production and thereby entry for

a given interest rate. This tends to slow growth. On the other hand, the decrease in entry causes a countervailing

general equilibrium effect: The equilibrium interest rate is smaller, which slows the price increase, as can be

seen from (C.3), and stimulates entry and productivity growth.

If σc < 1, the representative household desires to smooth consumption over time and reacts inelastically to

changes in the interest rate. The decline in the interest rate is therefore more pronounced than for σc > 1.

This explains why the positive effect on productivity growth predominates in the former, and the negative effect

predominates in the latter case.

The growing resource price depresses consumption growth along the equilibrium path because it induces

quantity degrowth. For σc < 1, the increase in productivity growth has a countervailing positive effect, both

directly and because it dampens the decline in intermediate quantity. Nevertheless, the overall effect of resource

scarcity on consumption and output growth is unambiguously negative for any value of σc.5

On the other hand, resource scarcity has a beneficial effect on household utility through the pollution

externality: The growing resource price ensures that the total amount of emissions at equilibrium is bounded

and the pollution stock declines along the (asymptotically) balanced growth path.

The initial resource stock affects the laissez-faire equilibrium only through the level of the resource price.

The price level leaves growth rates unaffected. The reason is that the level of the resource price does not

influence research profits because the return to and the costs of R&D decline in the price level in the same way.

It follows that two economies with different initial resource endowments share the same long-run growth rates

and the same technology paths.

On the other hand, the price level is relevant for the determination of intermediate production levels in each

period. The higher the resource price, the higher is the price firms in the consumption goods sector pay for

intermediate goods. The lower are therefore intermediate demand and the equilibrium quantity of intermedi-

ates. Productivity and labor in the consumption goods sector are independent of the initial resource stock.

Accordingly, the paths for output and consumption in an economy with small initial resource stock are below

those of a more resource-abundant economy. At the same time, there is less pollution in every period as less of

the polluting input is produced.

C.1.5 Proof of proposition C.1

(a) Growth effects

(i) Quantity degrowth: Along the lines of the baseline model, it can be shown that the economy adjusts

to its balanced-growth path without transitional dynamics. The allocation of labor is constant for all t.
5Contrary to the equilibrium in the baseline model, it is even possible that the growth rates of consumption and output are

negative (see also Schou (2002) for a similar result). Degrowth does then not only occur in polluting quantity but in consumption

and output.
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Integrating (A.8) over i, computing the growth rate and using (C.3) then yields

X̂LF, R = Q̂LF, R − 1

1− αr
LF,R . (C.6)

The transversality condition for assets requires rLF,R > Q̂LF,R . As 1
1−α > 1, this is suffi cient for X̂

LF,R in

(C.6) to be negative.

(ii) Growth rates of c, Y , S: From the Euler-equation, taking into account Ŷ = ĉ, it follows that the

introduction of a finite resource stock F0 < ∞ lowers output and consumption growth if and only if it

decreases the equilibrium interest rate. The equilibrium interest rate can be found to be

rLF, R =
1
2
1
σc
µL
(√
1 + d− 1

)
+
(
1−α
α

(√
1 + d− 1

)
+ d
)
ρ

1
α
1
σc

(√
1 + d− 1

)2
+ 1−α

α

(√
1 + d− 1

)
+ d+ κR,1

, (C.7)

for all t, where κR,1 := α
1−α

1
σc

(
1
α

(√
1 + d− 1

)2
+ 1−α

α

(√
1 + d− 1

)
+ d
)
. The term κR,1 > 0 in the

denominator is only present because with F0 < ∞, the resource price pRt increases over time according
to the Hotelling rule (C.3). The introduction of a finite initial resource stock decreases the equilibrium

interest rate and therefore growth in output and consumption.

The effect of the finiteness of the resource stock on the equilibrium growth rate of S is obvious, as the

long-run pollution growth rate is negative precisely because the resource stock is exhaustible and the

resource price increases.

(iii) Growth rate of Q: Setting equal the consumption Euler-equation and the relation ĉ = αX̂ + (1− α)Q̂
where X̂ is given by (C.6), Q̂LF,R can be determined. After some manipulation, the growth rate

Q̂LF,R =
1
2µL−

1
α

(√
1 + d− 1

)
ρ+ kR,2

1
α
1
σc

(√
1 + d− 1

)2
+ 1−α

α

(√
1 + d− 1

)
+ d+ κR,1

(√
1 + d− 1

)
, (C.8)

is derived, with κR,2 = α
1−α

(
1
σc

1
2µL−

1
α

(√
1 + d− 1

)
ρ
)
. Both κR,1 and κR,2 are attributable to the

positive growth rate of the resource price associated with the introduction of an exhaustible resource

stock F0 <∞. Setting κR,1 and κR,2 to zero and comparing the resulting expression to Q̂LF,R proves that
the growing resource price decreases the productivity growth rate if and only if

kR,2

(
1

α

1

σc

(√
1 + d− 1

)2
+
1− α
α

(√
1 + d− 1

)
+ d

)
<

(
1

2
µL− 1

α

(√
1 + d− 1

)
ρ

)
κR,1 .

Substituting the expressions for κR,1 and kR,2, the condition becomes

1

α

1− σc
σc

(√
1 + d− 1

)(1
2

1

σc
µL
(√
1 + d− 1

)
+

(
1− α
α

(√
1 + d− 1

)
+ d

)
ρ

)
< 0

which is equivalent to σc > 1. For σc < 1, the growing resource price increases the productivity growth

rate.

(iv) Parameter restriction for positive long-run growth: Substituting the solution for rLF, R in the

Euler-equation, the upper bound on ρ which guarantees positive consumption growth can be shown to
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equal ρLF,Rc = 1
2µL

1
1
α (
√
1+d−1)+κR,3

. The expression κR,3, defined as κR,3 := 1
1−α

(√
1 + d− 1

)
+ 1

α2 +

d/
(√
1 + d− 1

)
, results from the growth rate of the resource price. As κR,3 > 0, the increasing resource

price lowers the upper bound on ρ.

(b) Level effects

(i) Technology path: It is obvious from the previous paragraph along with B̂LF,R = 0 that the initial

resource stock F0 does not influence the growth rates of Q and B along the equilibrium path. Because the

initial values for Q and B are given and the growth rates of Q and B jump to their respective ABG-levels

directly, it follows that the entire paths of Q and B do not depend on F0.

(ii) Level of pR: Taking into account that r = rLF,R and LY are constant along the equilibrium path and Q

grows at the constant rate Q̂LF,R for all t, solving equation (C.5) for the resource price in t = 0 yields

pR0 = α2
(
Q0LY
F0

)1−α(
1

1− αr
LF,R − Q̂LF,R

)1−α
, (C.9)

with rLF,R and Q̂LF,R given by (C.7) and (C.8). Using the Hotelling-rule (C.3), the resource price can be

determined at any point in time. A decline in F0 increases the price for all t.

(iii) Levels of X, c, Y , S: It has been shown in (i) that the path for Q is unaffected by a variation in F0.

It can be shown that the same is true for the constant LY . Further, there is no direct effect of F0 on X,

c, Y and S. However, intermediate demand in every period t decreases in the resource price according to

equation (A.8) and (C.4). It follows that by increasing the resource price for all t, a decline in F0 shifts

the path for intermediate quantity downwards.

Because {LY }∞0 and {Qt}∞0 are independent of F0, the path for output and consumption shifts downwards

with the path for X.

Further, because {Bt}∞0 is not affected by F0, emissions Xt/Bt are lower for all t. The path for the

pollution stock St is given by the solution to the differential equation (8), Ṡt = Xt/Bt − δSt. From the

general solution, it can be concluded that due to the decline in emissions, the pollution stock S is lower

in every period t > 0.

C.2 Appendix to section 5.2:

Resource scarcity in the long-run social optimum

C.2.1 First-order conditions

Three changes occur in the set of necessary first-order conditions compared to the baseline model: First, instead

of the marginal labor requirement, the shadow price λR of the non-renewable resource contributes to the marginal

social cost of intermediate production so that the first-order condition for X becomes

∂H

∂Xt
= 0⇔ vSt

Bt
+ λY tαX

α−1
t L1−αY t Q1−αt − λRt = 0 (C.10)

24



In the first-order condition (B.13) for Q, the last term on the left-hand side (λLt (1/ϕ)
(
Xt/Q

2
t

)
drops out

because Q no longer affects the production of intermediate goods.

Second, the first-order conditions are complemented by a complementary slackness condition:

∂H

∂λRt
≤ 0⇔ F0 −

∫ ∞
0

Xtdt ≥ 0 λRt ≥ 0 λRt

(
F0 −

∫ ∞
0

Xtdt

)
= 0 (C.11)

Third, labor is only allocated to research and output production which changes the first order condition for λLt

to:
∂H

∂λLt
= 0⇔ L = LY t + nt(q

2
t + b

2
t + d) (C.12)

The set of first-order conditions is otherwise unaffected by the modifications in the model setup.

C.2.2 Proof of proposition 2

(a) Binding constraint

(i) Quantity degrowth: If there is quantity degrowth, Ŝ∞ = 0 so that vS∞ = 0, while λR grows persistently.

To satisfy the first-order condition (C.10) for X, the social marginal product of X in production must

equal λR asymptotically:

c−1/σc∞ αXα−1
∞ L1−αY∞Q

1−α
∞ = λR∞ (C.13)

Note that we already substituted λY = c
−1/σc
∞ from the first-order condition for c. Condition (C.13)

replaces condition (16) for asymptotically-balanced growth from the baseline model. Computing growth

rates on both sides of (C.13) yields (−1/σc · ĉ∞) − (1 − α)
(
X̂∞ − Q̂∞

)
= ρ. From this equation, using

ĉ∞ = αX̂∞ + (1− α)Q̂∞, we derive the growth rate X̂R
∞ for any given Q̂R∞:

X̂R
∞ =

1
α
1−α

1
σc
+ 1

((
1− 1

σc

)
Q̂R∞ −

1

1− αρ
)

(C.14)

If σc < 1, it can be seen directly that X̂R
∞ < 0. For σc > 1 the transversality conditions, which require

ρ >
(
1− 1

σc

)
Q̂R∞, together with (1− α) < 1 guarantee that indeed X̂R

∞ < 0.

(ii) Green Innovation: The research-arbitrage equation is:

µ

2q∞
LY∞ =

µ

2b∞
LY∞

(
α

1− α −
1

1− α

(
λR
λY

)
∞

(
X

Q

)1−α
∞

Lα−1Y∞

)
(C.15)

Substituting (C.13) in (C.15) shows that investing in the cleanliness of technology is not optimal in the

long run:

µ

2b∞
LY∞

(
− α

1− α +
α

1− α

)
= (ρ− (1− 1/σc) ĉ∞)

⇔ bR∞ = 0

From q2∞+b
2
∞ = d it follows that qR∞ =

√
d so that labor in the R&D-sector is entirely used for productivity-

oriented innovation.
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(b) Unbinding constraint

(i) Convergence of
∫∞
0
Xtdt: The integral

∫∞
0
Xtdt can be written as the sum of the two integrals

∫ T
0
Xtdt

and
∫∞
T
Xtdt. It converges if and only if both integrals in the sum converge.

Because Xt is finite for every t, the definite integral
∫ T
0
Xtdt assumes a finite value.

Consider the second integral: In any solution to the social planner’s problem for which growth rates

converge to the growth rates of the asymptotically-balanced growth solution with quantity degrowth from

section 4.3 in the paper, the sequence
{
X̂t

}∞
0
converges to the constant X̂∞ < 0. Assuming continuity,

convergence implies that there exists a time T such that X̂t < X̂ < 0 for all t > T . Therefore, if the

integral
∫∞
T
XT e

X̂·tdt converges, so does the integral
∫∞
T
Xtdt. The limit of the integral

∫∞
T
XT e

X̂·tdt is

XT [1/X̂ · eX̂·t]∞T = −XT /X̂ · eX̂·T > 0 as X̂ < 0. Because XT <∞, the limit is finite. It follows that the
integral

∫∞
T
Xtdt converges.

We have thus proven that
∫∞
0
Xtdt =

∫ T
0
Xtdt+

∫∞
T
Xtdt converges.

(ii) Equality of solutions: Because the integral
∫∞
0
Xtdt converges,

∫∞
0
Xtdt < F0 for a suffi ciently large F0.

In this case, the natural resource constraint is not binding and it follows from (C.11) that λRt = 0, ∀t. If
λR = 0, differences in the first-order conditions compared to the baseline model only arise because labor

is no longer used in intermediate production in the model of this section. But for parameter constellations

such that there is quantity degrowth in the baseline model, labor use in intermediate production converges

to zero in the baseline model as well, so that the first-order conditions and therefore the long-run solutions

are identical for t→∞.
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