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Abstract

We study economic growth and pollution control in a model with endogenous rate and direction of

technical change. Economic growth results from growth in the quantity and productivity of polluting inter-

mediates. Growth of GDP and pollution can be decoupled by reducing the pollution intensity of a given

quantity through costly research (green innovation) and by containing rebound effects from productivity

growth on polluting intermediate quantity. The latter implies that also the rate of GDP growth remains

below productivity growth (deceleration). While neither green innovation nor deceleration is chosen under

laissez-faire, both contribute to long-run optimal pollution control for reasonable parameter values.
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1 Introduction

When it comes to the question of whether and how economic growth and environmental conservation should

be reconciled, it is widely argued that technical change will play a crucial role (see for instance the Stern

Review, Stern (2007), IPCC AR5 Synthesis Report (2014)). Technological development can help to decouple

economic growth from pollution, be this by “green innovations”, reducing the pollution intensity of production

inputs or by productivity enhancing innovations, raising input productivity. However both types of innovations

are not undisputed: Boosting green innovation diverts resources from other research activities and may thus

reduce GDP growth. Productivity enhancing innovations in turn are feared by others for their so-called rebound

effects, which raise economic activity and pollution. Rebound effects of technical progress are one reason for

environmental activists like Greenpeace to believe that the world economy should give up economic growth and

converge towards stationary levels of consumption and production.

Consider a transport company carrying Y = F (LY , X,Qt) ton-miles of freight with LY driver-hours and X

truck-hours (truck weight times running hours). The variable Qt measures the effi ciency of the current truck

generation. Truck-hours involve the combustion of fuel, which in turn causes emissions X/Bt, where 1/Bt

measures the emissions caused by running a truck of the current generation for an hour. A green innovation

raises Bt. An example of such an innovation is the introduction or the improvement of catalytic converters.

Given total factor employment, it always reduces pollution without affecting output. Any green innovation is

thus unequivocally environment friendly. A productivity enhancing innovation raises Qt. This may be the

introduction of a new truck version built with lighter materials like aluminium, carbon or titanium. Such an

innovation is not dirty or clean per se. Whether it is dirty or clean hinges on its effect on polluting input use.

The latter in turn depends on how the innovation affects factor prices and output demand: Any productivity

enhancing innovation can be used to reduce polluting input use X while keeping output Y constant. In the

example, transport companies could deliver the same Y ton-miles as before the innovation, running the same

number but lighter trucks. This would reduce X, fuel consumption, and emissions X/Bt. Instead, as delivery

becomes cheaper, the transport company may prefer business expansion over fuel saving, shifting to larger and

heavier trucks. The increase in output triggered by the innovation ‘rebounds’on the amount by which polluting

inputs are actually reduced (compared to the benchmark of constant output). This effect is usually referred to

as the rebound effect of productivity enhancing innovations.1 In the first example, with constant Y , there

is zero rebound. In contrast, if X is kept constant, there is said to be ‘full rebound’(rebound effect of 100%).

Pollution is not affected. The concern about productivity enhancing innovation arises because the rebound effect

may even be larger, what is sometimes referred to as ‘backfire’: rebounds which induce a net increase in input

use. The production of trucks itself involves the transportation of factors and intermediate goods. Cheaper

transportation will thus also raise the effi ciency in truck production. Keeping constant the total amount of

resources that flows into the production of trucks and transportation as before the innovation, demand and

1Following Berkhout et al. (2000) we can define the rebound effect as the percentage
∆
p
X
−(X0−X1 )

∆p · 100 of potential input

saving ∆p
X = X0 −Xp that is lost due to increased input use, where Xp is defined by F (LY 0, X0, Q0) = F (LY 0, X

p , Q1). In the

first example with constant Y and LY , the rebound effect is 0% (since X1 = Xp and hence
∆
p
X
−(X0−Xp )

∆
p
X

= 0). In the second

example with constant X, the rebound effect is 100% (since X1 = X0 and
∆
p
X
−(X0−X1 )

∆
p
X

= 1). While Berkhout et al. (2010) refer

to energy inputs, we apply the definition more generally to polluting inputs.
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output will therefore grow by more than just the effi ciency gain in transportation: X rises and, as a by-product,

emissions X/Bt rise as well. Such strong rebounds were already discussed by William Stanley Jevons (1865),

who describes how the invention of the steam engine —by reducing the amount of coal needed to produce a

given amount of Joules —led to increased coal consumption.2

A minimal demand by environmental activists is that rebound effects of productivity innovations should

be kept below their maximal level. Since this reduces not only polluting input growth, but also GDP and

consumption growth below their potential growth rates, we speak of deceleration in this case. Environmental

activists often advocate reducing the rebound effect to zero, which can be achieved either by strong deceleration

given productivity growth or by giving up productivity growth altogether.3

We address the question of whether persistent growth of output and consumption is socially optimal and if

so, how its environmental effects should best be controlled. Our main finding is that for empirically plausible

parameter values, it is not suffi cient to partly direct research toward green innovation to reduce the environmental

impact of productivity growth. The rebound effect of productivity enhancing innovation should be controlled

as well: The rate of polluting input growth X̂ should be held below the rate of productivity growth Q̂. This

involves deceleration: The rate of GDP growth Ŷ remains below its potential growth rate, also determined by

the rate of productivity growth Q̂. Our results imply that policy may have to stimulate technical development

and green innovation in particular while at the same time setting incentives to control the rebound effect which

offsets potential effi ciency gains in the laissez-faire equilibrium.

Our paper offers a comprehensive analysis of the market equilibrium and the social optimum in a model

with endogenous technical change. Research can be directed to productivity enhancing innovation raising

input effi ciency and/or green innovation decreasing the pollution intensity of inputs. The long-run laissez-faire

equilibrium does not internalize pollution externalities. Consequently, no research is directed toward green

innovation, nor is there deceleration. Productivity growth comes with maximal rebound and GDP growth. We

set up the model so as to make sure that growth would be optimal under standard conditions if pollution were

not taken into account. Further, our setup ensures that optimal growth should always be accompanied by green

innovation, once pollution is accounted for.4 We show that if production is relatively inelastic with respect

to polluting intermediate quantity, there must be control of the rebound effect as well. We argue in the main

text that this is the empirically plausible case.5 The intuition behind our main result is that with inelastic

production, restricting the rebound effect of productivity growth comes relatively cheap, without incurring a

large loss in potential consumption growth: Deceleration does not have to be too strong. Further, the social

return to green innovation rises in the production elasticity of the polluting input. It is therefore comparatively

2An overview over the different channels through which technical progress may trigger rebound effects, of which those mentioned

in the text are two examples, is for example given in Gillingham, Rapson and Wagner (2015).
3The demand often even goes beyond avoiding rebound effects by giving up growth: The so-called ’degrowth’ movement

shares the belief that the world economy has surpassed sustainable levels of economic activity, so that downsizing -‘degrowth’- is

unavoidable (see Ariès (2005) and Latouche (2004) for example).
4This result is driven by the existence of fixed costs in each individual research unit. Once a research unit is opened up and

the fixed costs are paid, making intermediates at least marginally cleaner while making them more productive generates almost no

additional cost.
5We can, however, fully characterize the long-run optimum also in the opposite case. For a full characterization of all cases, we

refer the interested reader to an extended appendix to this paper, available upon request from the authors.
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small if this elasticity is low. A socially optimal path thus features all three elements of the title: (Strictly

positive) endogenous growth, green innovation and GDP deceleration.

While the terms “controlling the rebound effect” for X̂ < Q̂ and “deceleration” for Ŷ < Q̂ may suggest

that polluting input growth and output growth are determined given productivity growth, it should be clear

that the planner chooses innovation and input allocation simultaneously. It goes without saying that a planner

who chooses to “control the rebound effect” will not first plan strong GDP growth and than decelerate to

control pollution. Remember that a productivity innovation is neither clean nor dirty per se. It acts clean if it

is used to reduce polluting inputs (given output). Accordingly, total productivity growth Q̂ can be partitioned

into clean productivity growth Q̂ − X̂ (productivity innovations used to reduce polluting input) and GDP

enhancing dirty productivity growth X̂ (productivity innovations used to raise output rebounding on polluting

input). Instead of saying that the planner controls the rebound effect and accepts the concomitant decelaration,

we may equivalently say that clean productivity growth is part of optimal policy. And an equivalent way to

phrase our main result is that if the elasticity of output with respect to the polluting input X is low, then

long-run optimum features persistent GDP growth (causing rebound), clean productivity innovation, and green

innovation. When we continue to use the terms “deceleration” and “controling the rebound effect” also in

context of a planner optimum, this is to remain consistent with the above terminology.

Even if the optimal path for our model economy features deceleration, this does not imply a decline of GDP

and consumption in absolute terms. In our model, persistent GDP degrowth towards stationary GDP and

consumption levels is preferable to a path with unconstrained pollution growth as it is chosen in the entirely

unregulated economy. However, giving up consumption growth altogether is never optimal (for a suffi ciently

patient household).

Although we restrict our analysis to the characterization of the long-run equilibrium and the social optimum,

by the very nature of our undertaking, we cannot confine the analysis to balanced growth paths. Along a

balanced growth path, the growth rate of intermediate input quantity equals the rates of productivity and

of output growth. Controlling the rebound effect requires to keep the growth rate of polluting intermediate

inputs persistently below the rate of productivity growth. To cover this possibility, we extend the analysis

beyond balanced growth to solutions characterized by growth rates which converge towards constant values

only asymptotically. We call such solutions ‘asymptotically-balanced growth solutions’.6

While a number of papers on technological change, economic growth and pollution have studied the optimal

direction of technical change, the optimality of deceleration has so far not been explicitly addressed. Closest

to our model are two contributions by Hart (2004) and Ricci (2007). These authors also consider the choice

between a lower pollution intensity and greater productivity. However, they neglect the possibility to lower

pollution growth by reducing the rebound effect of productivity growth so that deceleration is not part of the

optimal solution of their models. Ricci (2007) concentrates on the analysis of balanced growth paths. Along

those, by definition, deceleration cannot occur. In Hart (2004), not only the quantity component of output but

output itself has a negative effect on the environment. There is thus no clean productivity growth. In both

6Asymptotically-balanced growth paths in environmental economic models have been described, e.g., in an Ak-model by With-

aagen (1995) and in a general one-sector growth model with non-renewable resources (but without pollution) by Groth and Schou

(2002).
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Hart (2004) and Ricci (2007) therefore, green innovation remains the only way to decouple economic growth

and pollution growth.

While the understanding of green innovation in Hart (2004) and Ricci (2007) is similar to ours, a different

definition is given in Grimaud and Rouge (2008) and Acemoglu, Aghion, Bursztyn and Hemous (2012). In

contrast to the present paper, these articles assume the existence of completely clean substitutes for polluting

production inputs. Building on Acemoglu (2002) both papers assume separate research sectors, one for a

polluting and one for a non-polluting production input.7 Green innovation increases the productivity of the clean

good while leaving the pollution intensity of the dirty input unchanged. Pollution in these papers is optimally

controlled by shifting the composition of GDP towards the clean sector. Grimaud, Lafforgue and Magné (2011)

consider three forms of R&D (raising the productivity of non-polluting factors, raising the productivity of

polluting factors, reducing the polluting impact of polluting factors), but without detailed microfoundation of

the R&D sectors. They numerically derive the optimal growth path and study different policy scenarios but do

not discuss rebound effects. None of these papers studies persistent deceleration.

The Cobb-Douglas specification of our model limits the extent to which clean inputs (labor) can substi-

tute for polluting inputs (intermediates). Reality often allows for more elastic substitution. Nevertheless, no

currently known production technology is completely clean. Transportation and storage of renewable energy,

manufacturing and disposal of batteries, solar cells or wind turbines generate emissions and other forms of pol-

lution. Even within relatively clean sectors, technical progress can be directed to productivity gains and/or to

towards reductions in pollution intensity and control of rebound effects matters, so that decelerations remains

an issue.8

The outline of our paper is as follows: Section 2 presents the model setup. We then determine the laissez-

faire equilibrium in section 3. In section 4, we characterize the unique long-run optimum. Our main result,

theorem 1, shows that for empirically reasonable parameter constellations, the optimal solution includes both

green innovation and deceleration to decouple output- and pollution growth. Section 5 extends the baseline

model to include a polluting non-renewable resource. Section 6 concludes.

2 The model

2.1 Setup

In each period, a representative household receives utility v(ct) = σc
σc−1c

σc−1
σc

t from per-capita-consumption

ct = Ct
L and utility φE(Et) = ψ σE

σE−1E
σE−1
σE

t from environmental quality Et. We assume as, for example,

Stokey (1998) as well as Aghion and Howitt (1998, chapter 5), that utility is additively separable. Discounted

7Several authors, among them Smulders and de Nooij (2003) and Hassler, Krusell and Olovsson (2012) use the framework by

Acemoglu (2002) to analyze energy-saving technical change in a setup without pollution externality. As we are mainly concerned

with the pollution externality, we do not refer to these contributions in detail here.
8Furthermore, any transition to sectors with relatively ‘clean’technology is bound to come slowly: More than 80% of today’s

energy consumption is not produced from renewable energy but from oil, gas and coal and total energy consumption is growing

for all forms of energy, particularly in non-OECD countries (International Energy Outlook (EIA (2016))) Even though the rapid

growth in the consumption of coal is projected to decline in the coming decades, growth in other fossil fuel continues and the share

of oil, gas and also coal in world energy consumption is expected to remain close to 80%.

5



intertemporal utility is given by

U =

∞∫
0

e−ρt
(

σc
σc − 1

c
σc−1
σc

t + ψ
σE

σE − 1
E
σE−1
σE

t

)
Ldt (1)

where ρ is the rate of time preference, L total household labor-supply and σc, σE > 0, σc, σE 6= 1 are the

intertemporal substitution elasticities of consumption and environmental quality respectively. ψ measures the

weight of environmental quality in instantaneous utility. Utility is increasing and strictly concave in both

arguments.

Environmental quality is inversely related to the stock of pollution originating from the intermediate sector:

Et =
1

St
(2)

While utility is concave in Et, the relation between environmental quality and pollution is convex. Depending

on σE , the disutility φ
S(St) = −φE(Et) = σE

1−σE S
1−σE
σE

t of pollution can be concave or convex in St. We assume

that it is convex by restricting σE to

σE <
1

2
(3)

so that the marginal disutility of pollution increases in the pollution stock. The assumption of convex disutility

also rules out parameter constellations for which the utility impact of pollution asymptotically becomes negligible

relative to that of consumption in a growing economy. This is not an interesting case for the long-run analysis of

the trade-off between economic growth and a clean environment. Not only the long-run laissez-faire equilibrium

but also the long-run optimal solution would be similar to those in non-environmental models of growth through

creative destruction.

The representative household allocates an amount LY t of its labor supply L to final-good production, LXt

to intermediate production and an amount LDt to research:

L = LY t + LXt + LDt (4)

Final output Yt is produced from labor LY t and intermediate goods Xit of various productivity levels Qit, i

∈ [0, 1] with the production function

Yt = L1−αY t

1∫
0

Xα
itQ

1−α
it di (5)

where 0 < α < 1. In our example Yt would be tons of freight times miles transported, LY t driving hours,

intermediate goods the different components of a truck (engine, body, tires ...) and Qit the state of technology

associated with the component.9 Yt is used for consumption only.

Yt = ctL. (6)

Intermediate goods are produced with the production function

Xit = ϕLXitQt (7)

9To adapt the truck example from the introduction to the Dixit-Stiglitz aggregator in (5), assume that before transporting

goods, the carrier chooses a truck type by combining the desired quantities Xit of a number of components i ∈ [0, 1].
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where ϕ > 0 is a parameter and Qt =
1∫
0

Qitdi measures aggregate productivity. An increase in overall produc-

tivity thus has a positive spillover on the production of truck components, which needs less labor.10 Truck use

requires a certain amount of fuel, which is proportional to truck weight times running hours, given by the sum

Xt =
1∫
0

Xitdi. Breaking fuel consumption down on the various components, Xit units of intermediate good i

are thus associated with a flow Rit of fossil resources used.11 In the baseline specification of our model, Rit

does not have to be accounted for explicitly. Formally, this amounts to the assumption that there is an infinite

supply of these resources in each period, such that their price is zero. We show in Section 5 that for parameter

constellations well in line with empirical evidence, the alternative assumption of a finite initial resource stock

does not affect the long-run social optimum so that our main results still hold.

The combustion of fuel causes emissions, which are ceteris paribus also proportional to truck weight times

running hours, i. e. Xt. However, it is possible to reduce the emissions intensity/increase the cleanliness of the

various components through R&D. Let Bit be the cleanliness of component i. To keep the optimization problem

tractable, we assume that aggregate cleanliness simply is the average of individual intermediates’cleanliness at

t: Bt =
1∫
0

Bitdi and that the pollution flow at time t is given by Xt/Bt.

If, in addition, a fraction δ of the pollution stock is cleaned up by natural regeneration processes in every

period, the pollution stock evolves according to the equation of motion:12

·
St =

Xt

Bt
− δSt (8)

Note that due to natural regeneration, pollution growth eventually ceases if there is no growth in intermediates

and therefore fossil resource use. However, if Xt grows, St asymptotically grows at the same rate for a given

technology level Bt. Still, even in this case, pollution growth remains below its potential as long as the rebound

effect of productivity growth is restricted. Along a balanced growth path in a standard growth model, produc-

tivity growth is used to expand output and more of the polluting input is used, so that X̂t = Q̂t. Remember

that productivity growth is said to have a rebound effect if it is not fully used to reduce polluting input use

(such that X̂t < −Q̂t) and that there is backfire if X̂t > 0. For ease of exposition, we do not differentiate

between partially controlled backfire and partially controlled rebound unless necessary, saying that there is

partial control of the rebound effect on any growth path with X̂t < Q̂t. As has been explained, controlling the

rebound effect comes at the cost of a slowdown in output growth below potential: There is deceleration.

Definition 1 There is (partial) control of the rebound effect whenever X̂t < Q̂t. Controlling the rebound effect

goes along with deceleration, Ŷt < Q̂t.

10Our results would not change if we assumed that instead of labor, a part YX of final output had to be spent on the production

of intermediates and Xit = ϕLXitQt were replaced by Xit = ϕYXit. THe externality which is explicitely assumed in the present

LXitQt specification would occure implicitly as a pecunary externality in the YX specification since final goods would become

cheaper with rising Qt. In both cases the dependence of Xit on aggregate productivity Qt ensures that the allocation of labor

supply and thus growth rates of the aggregate variables in our model can be constant in the long run.

11Fossil resources can of course also be inputs in the production of intermediate goods. While the emissions from these fossil

fuels accrue before the goods are actually used, we do not separate them from emissions arising from the use of intermediate goods.
12 In general, we use a dot above a variable to indicate its derivative with respect to time, while we mark growth rates with a

cicumflex.
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The two sources of slow pollution accumulation (besides natural regeneration) become apparent when rewrit-

ing (8) as Ṡt = Xt
Qt

Qt
Bt
− δSt: First, Ṡt is small whenever Qt/Bt is small, which means a suffi ciently large share

of research must have been oriented towards green innovation in the past. Second, pollution accumulates more

slowly if the rebound effect of productivity growth has been controlled such that Xt/Qt is smaller. If the

rebound effect remains uncontrolled (X̂t = Q̂t), the stock of pollution remains constant (Ŝt = dŜt
dt = 0) if and

only if B̂t = Q̂t.13 This suggests the definition of a natural benchmark for the direction of technical change:

Definition 2 The direction of technical change is ecologically neutral if and only if B̂t = Q̂t, productivity-

oriented if and only if B̂t < Q̂t, and green if and only if B̂t > Q̂t.

Both productivity Q and cleanliness B change over time due to innovations from a continuum of R&D-

sectors. Entry to the research sector for any intermediate Xit is not restricted. For research unit j ε [0,∞],

improving Qit by a rate qijt and Bit by a rate bijt requires

lDijt(qijt, bijt, Qit, Bit, Qt, Bt) = q2ijt
Qit
Qt

+ b2ijt
Bit
Bt

+ d
Qit
Qt

(9)

units of labor. We call qijt and bijt the step-size of an innovation with respect to productivity and cleanliness,

respectively. The wage rate is denoted by wDt. Then wDtd
Qit
Qt

> 0 are fixed entry costs for unit j in sector i.

Variable costs for each dimension of technology improvement are quadratic in the step-size.14 Total costs wDtlDijt

rise with the level of sectoral relative to aggregate productivity Qit/Qt and cleanliness Bit/Bt respectively. The

underlying assumption is that technology improvements in a given sector are increasingly diffi cult the more

advanced the technology in that sector is already while there are positive spillovers from the other sectors.15

Given lDijt, a trade-off exists between making an intermediate more productive and making it cleaner. On the

other hand, there is also an indirect positive relation between research orientations: Once fixed costs have been

paid to innovate in one direction, a comparatively small additional labor-investment is needed to increase the

other technology stock as well.

If a researcher j enters into the research sector for intermediate Xi at time t, he hires labor lDijt and chooses

a step-size qijt and bijt for the improvement in productivity and cleanliness respectively. The wage rate wDt

is taken as given. Innovations occur at the exogenous, constant Poisson arrival-rate µ per unit of time for the

individual researcher j. An innovation changes the sectoral productivity level by qijtQit and the cleanliness

of production by bijtBit. The innovator obtains a patent for the production of the improved intermediate

good. He then receives a profit flow from selling the intermediate. This flow eventually ceases when a new

innovation arrives and the incumbent is replaced by another firm. If nit units decide to enter research sector i

13 Ŝt = 0 if and only if Xt = δStBt and dŜt
dt

= 0 if, in addition, X̂t = B̂t. Since X̂t = Q̂t, this requires B̂t = Q̂t.
14While fixed costs are needed to guarantee a finite number of research units, assuming costs to be quadratic in the step-size

ensures the existence of an effi cient choice of the latter. As we explain in section 4.3, the presence of fixed costs creates a certain

complementarity between pollution-reducing and productivity-enhancing innovation, which we believe to be realistic.
15Like the intermediate production function, labor required in R&D (equation (9)) must depend on the aggregate and additionally

on the sectoral levels of technology to ensure asymptotically constant growth of the aggregate variables.
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in t, innovations arrive at rate µnit in this sector. The expected development of Qit and Bit is given by

E [∆Qit] =

nit∫
0

µqijtQitdj (10)

E [∆Bit] =

nit∫
0

µbijtBitdj. (11)

While the sectoral technology level faces discontinuous jumps, aggregate technology evolves continuously because

there is a continuum of sectors carrying out research. According to the law of large numbers, the average rates

of change Q̇t and Ḃt of Q and B approximately equal the respective expected rates of change, which are derived

by aggregating over sectors in (10) and (11):

·
Qt =

1∫
0

nit∫
0

µqijtQitdjdi (12)

·
Bt =

1∫
0

nit∫
0

µbijtBitdjdi. (13)

2.2 Balanced and asymptotically-balanced growth

The subsequent analysis of our model in this and the following sections extends beyond balanced growth paths

to ‘asymptotically-balanced growth paths’. The definition below serves to clarify the terminology. Here and in

the following, z∞ refers to the limit lim
t→∞

zt of a variable z.

Definition 3 Assume that for some initial state (Q0, B0, S0), there exists a (market or planner) solution such

that the sequence
(
Q̂t, B̂t,Ŝt

)∞
t=0

converges towards the vector
(
Q̂∞, B̂∞, Ŝ∞

)
for t → ∞. We call such a so-

lution an asymptotically-balanced growth (ABG) solution. We say that the model has an asymptotically unique

ABG-solution if all ABG-solutions have the same limit vector
(
Q̂∞, B̂∞, Ŝ∞

)
.

If there exist initial states (Q0, B0, S0) such that the corresponding solution paths are characterized by
(
Q̂t, B̂t,Ŝt

)
=(

Q̂∞, B̂∞, Ŝ∞

)
for every t, we call the path defined by

(
Q̂t, B̂t,Ŝt

)∞
t=0

=
(
Q̂∞, B̂∞, Ŝ∞

)
the unique balanced

growth (BG)-path.

In abuse of terminology, we sometimes refer to the unique limit of all ABG-solutions for t→∞, characterized
by the unique vector

(
Q̂∞, B̂∞, Ŝ∞

)
, as the ABG-solution.

Note that a BG-solution, defined by constant growth rates of Q, B and S for all t, is also an ABG-solution. The

reverse is not true because there may not exist an initial state (Q0, B0, S0) such that Q̂t, B̂t and Ŝt are constant

for all t. We will see that while the economy has a unique BG-equilibrium and a unique ABG-optimum for any

set of parameters, it need not have a BG-optimum. In particular, a BG-optimum does not exist in theorem 1.
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3 The laissez-faire equilibrium

The laissez-faire equilibrium is given by sequences of plans for per-capita consumption {ct}∞0 , assets {At}
∞
0 ,

labor supply in production {LXit, LY t}∞0 and research {LDt}∞0 , demand for intermediates
{
Xd
it

}∞
0
, demand

for labor in production
{
LdXit,L

d
Y t

}∞
0
and research labor demand {lDijt}∞0 , plans for the step-size {qijt}

∞
0 and

{bijt}∞0 of innovation in productivity and cleanliness, as well as sequences of intermediate prices {pit}∞0 and

wages {wXit,wY t,wDt}∞0 in intermediate production, final good production and research and a path {rt}∞0
for the interest rate such that in every period t, (i) the representative household maximizes utility taking into

account the budget constraint and the labor market constraint (4), (ii) profits from final and intermediate goods

production as well as research profits are maximized, (iii) aggregate expected profits in each research sector i

are zero (iv) the markets for intermediate goods, the three types of labor and assets clear (v) all variables with

the possible exception of qij and bij are non-negative.

The solution of the model under laissez-faire follows closely that in standard endogenous growth models.

Define an upper bound ρLF for the rate of time preference such that Q̂LF > 0 if and only if ρ < ρLF . Further,

define a lower bound ρLF such that the transversality condition for assets is satisfied if and only if ρ >ρLF .16

The following proposition describes the balanced-growth equilibrium:

Proposition 1 BG laissez-faire equilibrium

There exists a ρLF such that the transversality condition for assets is satisfied if and only if ρ >ρLF .

For ρ >ρLF , the model has a unique BG-laissez-faire equilibrium. Further, an upper bound ρLF for the rate of

time preference exists such that economic growth is strictly positive if and only if ρ < ρLF . Productivity growth

leads to equally fast expansion of polluting quantity (X̂LF
∞ = Q̂LF∞ ). The rebound effect of productivity growth is

not controlled and there is no green innovation. Pollution grows at the same rate as consumption, production

and productivity. Given (3), i.e. σE < 1/2, a solution without long-run growth is socially preferable.

Proof. See appendix A.1.

From the previous section it is obvious that in our model, there are no incentives for producers to invest in

cleaner intermediates or counteract the rebound effect of productivity growth. In a growing economy, there is

unconstrained pollution growth. This is clearly suboptimal if the disutility of pollution is convex (σE < 1/2) but

utility is concave in consumption: The marginal utility gain from an additional unit of consumption becomes

negligible relative to the marginal utility loss generated by a unit increase in the pollution stock as consumption

and pollution rise. Utility declines persistently without lower bound. If consumption growth is given up in the

long run, the pollution stock and utility converge to constant values. Stationary long-run levels of consumption

and production as called for by environmental activists are therefore welfare-improving over the laissez-faire

equilibrium.

16The boundary values are ρLF = 1
2
µL
((

1
α

+ α
1−α

) (√
1 + d− 1

))−1
and ρLF = 1

2
α(1− α)

(
1− 1

σc

)
(1 + d)−1/2 µL.
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4 The Social Planner’s solution

The social planner chooses the time paths of Q, B and S as well as consumption c, production Y, X, Xi, xij , the

allocation of labor LY t, LXt,LXit,LDt, lDijt, the number of research units17 nit = nt and a step-size qijt and bijt

for technology improvements in every period t so as to maximize utility (equation (1)). She takes into account

the labor market constraint (4), the aggregate resource constraint (6), the effect of pollution on environmental

quality (2), the equation of motion for pollution (8), the expected change in Qi and Bi as given by (10) and

(11) as well as the aggregate equations of motion for Q (12) and B (13).

Because all research units j are ex ante symmetric and research costs are convex in qij and bij , the social

planner chooses the same qijt, bijt and therefore lDijt for every j in sector i. Further, the planner allocates

intermediate production in every sector i to the latest innovator because he is the most productive and cleanest

while marginal costs are the same for all j. We therefore omit the index j from now on. In fact, it is optimal to

choose the same qit = qt and bit = bt in every sector, as we explain in appendix B.1. We also show there that

given the allocation of resources over firms and sectors just described, the dynamic social planner’s problem

involves the sector-independent variables Q, B, S, c, X, LY , n, q and b only and we derive the first-order

conditions.

The long-run optimal solution differs dependent on the parameter constellation considered. To simplify the

analysis, we focus on the empirically most relevant case by making the following assumptions18 :

α/(1− α) < 1− (σc − 1) /σc
(1− σE) /σE

(14)

ρ > ρdelta :=
1

2

(
1 +

(
α

1− α

)2)1/2
d−1/2µL− κ (1− σE) /σE

(1− σc) /σc
δ for σc < 1 (15)

where κ =

(
1

σc
+

α

1− α

(
1− (σc − 1) /σc

(1− σE) /σE

))
The second restriction excludes a boundary case19 which does not lead to qualitatively different conclusions.

The first restriction is crucial for the characteristics of the optimal path, as we explain in section 4.3. To see

that condition (14) indeed describes the most likely parameter constellation, consider the relevant parameters,

α, σc and σE : While there are little reliable empirical results on σE , we believe that disutility is convex in

the pollution stock (σE < 1/2) so that the marginal disutility of pollution is the larger, the more polluted

the environment is. As for the IES in consumption σc, the range σc ∈ (0, 1) is suggested by a large body of

empirical literature (e.g. Hall (1988), Ogaki and Reinhart (1998)). Defining a reasonable range for α is less

straightforward. Setting α to the capital share would imply α ≈ 1/3. Interpreting Xt as energy, α would be

17To allow for an analytical solution to the planner problem we consider the constrained maximization problem with nit = nt

for all i.
18For a full characterization of all cases, we refer the interested reader to an extended appendix to this paper, available upon

request from the authors.
19We show in lemma 2 that the pollution stock S decreases whenever σc < 1. S can at most decrease at the rate of natural

regeneration (Ŝ∞ ≥ −δ). To actually reach this rate of decrease, flow pollution would have to become zero and all economic activity
would have to be given up. This can clearly not be optimal in finite time as a positive consumption level has to be maintained.

Still, it can be optimal to approach Ŝ∞ = −δ asymptotically by decreasing the pollution flow particularly fast. This case is more

diffi cult to handle analytically and does not offer new insights. Condition (15) ensures that Ŝ∞ > −δ. Note that no such restriction
is needed for σc > 1 as S increases in the long run in this case (see lemma 2).
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substantially smaller than the capital share: Energy expenditures as a share of GDP amounted to 6.2% in

the U.S. in 2015 (EIA (2017)). On the other hand, α is also the inverse of the mark-up in the intermediate

production sector. Estimates for the manufacturing sector in the U.S. (Roeger (1995)) suggest values of α of at

least 0.3. We consider values which do not exceed 0.5 as plausible. With σE < 0.5, σc ∈ (0, 1) and 0 < α ≤ 0.5,

condition (14) is always satisfied.

If we choose a smaller range for α, so that α does not exceed the capital share of 1/3, condition (14) holds for

σc < 2 which covers most empirical estimates of the IES in consumption. Setting α to the energy share in real

GDP, even extremely high values of σc up to 4.4 as found by Fuse (2004) for Japan do not violate the condition.

Before analyzing optimal pollution control in a growing economy (see section 4.3), we shortly describe the

conditions for positive growth and the development of the pollution stock along the optimal path.

4.1 Optimality of persistent economic growth

In standard models of endogenous growth, long-run growth is optimal for suffi ciently patient households. This

result carries over to our model with negative environmental externalities.

Lemma 1 Positive long-run consumption growth

There exists a ρ, such that for any rate of time preference ρ < ρ, long-run optimal consumption growth is

positive.

Proof. The upper bound ρ = 1
2

(
1 +

(
α
1−α

)2)1/2
d−1/2µL is derived in the extended appendix. The proof

follows from the solution of the model, similar to the proof in standard endogenous growth models.

The result is not surprising as pollution accumulation can be restricted without giving up consumption

growth altogether. Persistent economic growth must however be accompanied by continuous pollution control.

4.2 The optimal relation between economic growth and pollution accumulation

We show in this subsection that optimal growth does not automatically require constant or decreasing pollution

levels. More precisely, we find that for our assumption of convex disutility of pollution (σE < 1/2) whether the

pollution stock de- or increases in the long-run optimum depends on the intertemporal elasticity of substitution

in consumption:

Lemma 2 Development of the pollution stock

Long-run growth must be accompanied by a persistent restriction of pollution growth. In a growing economy, the

optimal pollution stock St increases (decreases) for σc > 1 (σc < 1).

Proof. The first statement follows as a corollary of proposition 1. As to the second, we show in appendix B.2

that in a solution with asymptotically-balanced growth, under restriction (15), the following condition must

hold:
σc − 1

σc
ĉ∞ =

1− σE
σE

Ŝ∞ (16)
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Given ĉ∞ > 0, the left-hand side of (16) is positive whenever σc > 1 and negative for σc < 1. Under assumption

(3) that the disutility of pollution is convex, 1−σEσE
on the right-hand side is positive. Therefore the right-hand

side of equation (16) is negative if and only if Ŝ∞ < 0 and positive if and only if Ŝ∞ > 0. It follows that the

pollution stock must increase whenever σc > 1 and decrease whenever σc < 1.20

Equation (16) is the balanced-growth condition described in Gradus and Smulders (1996) which has become

standard in models of the environment and endogenous growth: It requires the ratio of instantaneous marginal

utility from consumption to instantaneous marginal disutility from pollution to develop proportionally to S/c.

The elasticity of substitution between c and S is unity then.

4.3 Pollution control and the direction of technical change

As shown in lemma 1, long-run growth in the optimal solution must go along with a persistent restriction of

pollution growth. It is intuitive that green innovation is always part of optimal pollution control: Once research

units are opened up and the fixed costs (e.g., for equipment and fixed labor costs) have been paid, it is almost

costless to make intermediates a little cleaner while making them more productive.

Unlike green innovation, restricting the rebound effect of productivity growth is not always optimal in a growing

economy. Recall from the introduction that by the term ’restricting the rebound effect’, we mean that the social

planner uses productivity growth only partly to raise output (dirty productivity growth) and partly to reduce

pollution (clean productivity growth). But the social cost from forgone GDP growth associated with choosing

partly clean over dirty productivity growth may be too large compared to its social benefit from the reduction

in pollution growth. Under the empirically likely parameter constellation given in condition (14), however,

it is socially desirable to restrict the rebound effect and incur deceleration, or, equivalently, to choose clean

productivity growth.

In the following theorem, we characterize the long-run optimal solution given conditions (3), (14) and (15).

We define a lower bound ρTVC for the rate of time preference so that the transversality conditions are satisfied

if and only if ρ > ρTVC21 .

Theorem 1 ABG optimum

There exists a lower bound ρTVC for ρ such that the transversality conditions are satisfied if and only if ρ > ρTVC .

For ρTVC < ρ < ρ, there exists an asymptotically unique ABG-optimum with the following properties: Pollution

growth Ŝ∞ equals the growth rate of flow pollution, X̂∞ − B̂∞. Ŝ∞ is reduced below the potential rate Q̂∞ both

by green innovation (B̂∞ > 0) and by restricting the rebound effect of productivity growth (X̂∞ < Q̂∞). The

latter goes along with deceleration (Ŷ∞ < Q̂∞). The ratio of green relative to productivity-improving innovation

is B̂∞/Q̂∞ = α/ (1− α). The direction of technical change is green (productivity-oriented), i.e., B̂∞ > Q̂∞

(B̂∞ < Q̂∞), if and only if α > 1/2 (α < 1/2).

20Note that (16) also suggests that under more general assumptions concerning the utility function, whether the pollution stock

de- or increases depends on σE being smaller or larger than one as well.

21The formal expression for the critical value ρTVC is ρTVC = 1
2

1−1/σc

1+ α
1−α

(
1− (σc−1)/σc

(1−σE)/σE

) (1 +
(

α
1−α

)2
)1/2

d−1/2µL (see the

extended appendix). Note that the condition ρ > ρTVC is satisfied for any non-negative ρ if σc < 1. In this case, a positive lower

bound for ρ is given by ρdelta in condition (15).
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Proof. See appendix B.3.

Given condition (14), i.e. α/(1 − α) < 1 − (σc−1)/σc
(1−σE)/σE , reductions in pollution intensity are optimally

combined with clean productivity growth. In other words, unlike in the laissez-faire solution, the rebound effect

of productivity growth is restricted (Q̂∞ − X̂∞ > 0) and there is deceleration (Q̂∞ − Ŷ∞ > 0).

In this case, the elasticity α of final good production Yt = Xα
t

(QtLY t)
1−α with respect to the polluting

input Xt is rather small. As it follows from the production function that Q̂∞ − Ŷ∞ = α
(
Q̂∞ − X̂∞

)
, a small

elasticity α implies that restricting the rebound effect does not require strong deceleration. Controlling the

rebound effect is therefore an attractive way for the social planner to control pollution growth. In our truck

example, a small elasticity means that the use of lighter materials for the truck body allows to achieve a given

amount of fuel saving without giving up much of the increase in tonne-miles transported which could be gained

by increasing truck size and weight and thus fuel use.

Further, because the attractiveness of clean as opposed to dirty productivity growth increases when α decreases,

it becomes less important to reduce the pollution intensity of intermediate goods. The smaller α, the lower

therefore the social return to green as opposed to productivity-improving research.

The expression 1− (σc−1)/σc
(1−σE)/σE is the ratio of green relative to productivity-improving innovation which yields

the pollution growth rate reconcilable with asymptotically-balanced growth (according to equation (16)) when

productivity growth is dirty, the rebound effect of productivity growth remains uncontrolled (Q̂∞ − X̂∞ = 0)

and there is no deceleration. If the elasticity α is so small that α/(1 − α) < 1 − (σc−1)/σc
(1−σE)/σE , the relative

return to green research compared to the net benefit from clean productivity growth is too low to support this

research orientation: It is not optimal to bring about the asymptotically-balanced pollution growth rate by green

innovation alone. Research then remains rather productivity-oriented but productivity growth is relatively clean

(Q̂∞ − X̂∞ > 0). Deceleration lowers the rebound effect of productivity growth and thereby helps to restrict

pollution growth.

For larger values of α not reconcilable with (14), a balanced-growth optimum without deceleration exists. In

the truck example, it is too costly in terms of tonne-miles transported to forgo an increase in truck size. While

lighter materials are used in truck production, truck weight and fuel use are not reduced. Pollution control is

achieved through green innovation only. This case is described in the extended appendix.

A solution without deceleration becomes less likely as σE increases if and only if σc < 1 and more likely if

and only if σc > 1. As σE increases from close to zero to 1/2, the intertemporal elasticity of substitution in

pollution (σE/(1− 2σE)) increases and the optimal pollution path becomes steeper. If σc < 1, this means that

the pollution stock must fall faster, so that stronger pollution control is required. If σc > 1, a larger positive

pollution growth rate is accepted by the social planner, so that less pollution control is needed.

We have characterized the social optimum in the long run only. The set of necessary conditions generates a

complex dynamic system which does not allow to determine the transition path analytically. Numerical analysis

suggests, however, that for any initial state of the economy, there exists a path leading towards the long-run

optimal solution.

We have pointed out that even with some control of the rebound effect, intermediate quantity may still rise:

There may still be backfire. A restriction of the rebound effect below 100% occurs if intermediate quantity falls

in absolute terms, not only per labor effi ciency unit. There is then degrowth in intermediate quantity (but not
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in GDP). Because quantity degrowth requires extreme deceleration, it is optimal only if the ratio α/(1− α) of

production elasticities is particularly small. This result follows as a corollary from theorem 1:

Corollary 1 Quantity degrowth

Xt converges to zero as Qt grows in the ABG-solution of the social planner’s problem described in theorem 1,

i.e. there is quantity degrowth (X̂∞ < 0), if and only if α
1−α < (1− α) (1−σc)/σc(1−σE)/σE .

Proof. Proof follows directly from setting X̂∞ < 0 in equation (B.25) in the appendix.

Note that quantity degrowth can only be optimal if the pollution stock is required to decline in the long-run

optimum (for σc < 1). Further, α should be substantially below the capital share. Quantity degrowth is likely

to be optimal if α is interpreted as the energy share in GDP: Setting α ≈ 0.09 and 1/3 ≤ σE < 1/2, the optimal

solution is characterized by quantity degrowth for almost all values of σc from the interval (0, 1).

4.4 Environmental care and the pace of economic growth

In our model, a stronger research orientation towards green innovation implies slower productivity growth for

given total research effort. Further, deceleration needed to control the rebound effect of productivity growth

requires to give up potential consumption growth. Intuitively, one might therefore expect environmental care to

slow down economic growth relative to the case where the negative environmental externality of intermediate

goods is not taken into account.

We find, however, that the above intuition is not necessarily correct. Comparing the optimal solution of our

baseline model to the optimum in a modified setting where the weight of pollution in utility is zero (ψ = 0), we

observe the following: First, economic growth is positive for larger rates of time preference in our framework.

Second, depending on parameters, growth rates of consumption, production and productivity may in fact be

higher than in the model without a negative external effect from pollution.22

Moreover, the degree of the household’s preference for a clean environment and therefore the strength of the

negative pollution externality, as reflected in the size of ψ, does not influence long-run growth rates at all (given

ψ > 0). The reason is that a stronger environmental preference does not alter the social return to productivity-

oriented research, which is the driver of economic growth. The long-run relation between productivity growth

and growth in intermediate quantity, consumption and output is fixed independently of the environmental

preference on an ABG-path.23

Corollary 2 Environmental care and the pace of economic growth

In the solution of theorem 1 compared to the optimal solution in a modified setting without negative external

effect from pollution on utility (ψ = 0), (i) the condition on ρ for long-run growth in per capita consumption to

22A similar result can be obtained if the optimal solution with ψ > 0 is compared not to the optimum with ψ = 0 but to the

laissez-faire equilibrium. It is, however, not possible to attribute faster growth to the environmental externality in particular in

this case because equilibrium growth may be suboptimally slow as a result of several other externalities (‘standing-on-shoulders’of

previous innovators, firms cannot appropriate the whole consumer surplus).
23A similar result was found by Gradus and Smulders (1993) in a Lucas—Uzawa-model. While stronger environmental preference

has no influence on long-run growth rates, it can be expected to affect the levels of the model variables along the long-run path.

These effects can however not be analyzed without studying transitional dynamics.
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be positive is less strict and (ii) long-run optimal growth in per capita consumption is faster if and only if the

rate of time preference is suffi ciently large.

Given ψ > 0, the strength of the representative household’s preference for a clean environment, as reflected in

the size of ψ, has no influence on long-run optimal growth rates.

Proof. See appendix B.4.

The driving force behind the result is a positive link between green and productivity-oriented research.

Green innovation can lead to an increase in the optimal amount of labor devoted to research. It thereby fosters

also productivity growth and therefore consumption growth. A similar effect has before been described by Ricci

(2007).

5 The model with a non-renewable resource

Pollution in the baseline model arises as a by product of intermediate good usage. As an example, we have

suggested that fossil fuels are used in proportion to intermediate goods in the production of the final good and

that pollution is due to emissions of greenhouse gases contained in these fossil fuels. So far we have assumed

that there is no restriction on the total amount of fossil fuel used over time. Indeed, it has been argued e.g.

by Nordhaus (1974) and more recently Hart(2016) that technical change in extraction technology will help

to overcome resource scarcity. Empirical support has amongst others been provided by Krautkrämer (1998)

and Hart and Spiro (2011). Nevertheless, in this section, we discuss the robustness of our main results with

respect to the consideration of a polluting non-renewable (fossil) resource stock. More precisely, intermediate

production is assumed to explicitly use an exhaustible resource as production input. For simplification, other

production inputs such as labor are ignored.24 We also do not allow for technical progress in input production,

so that resource scarcity cannot be overcome by improvements in resource effi ciency. There thus ultimately has

to be a decline in intermediate production over time, in other words: there must be quantity degrowth. We have

argued before that judging by empirical estimates for the model parameters, a solution with quantity degrowth

is reasonable. We prove that the results of our baseline model for the long-run social optimum still apply if the

optimal solution of the baseline model is characterized by quantity degrowth and the initial resource stock is

large enough.25 The negative pollution externality of intermediate production then reduces optimal resource

use in a way that a suffi ciently large resource stock is never exhausted.

5.1 Setup

We denote the resource stock in period t by Ft. Starting from a finite positive initial level F0, the resource stock

is depleted proportionally to resource use:
·
F t = −Rt. (17)

We assume that the resource is owned by the representative household and, for simplification, that it can be

extracted at zero cost (see also Barbier (1999), Schou (2000) and Groth and Schou (2002)).
24Again, an alternative interpretation is that the resource is needed to use intermediates, i. e. fossil fuel is needed to operate a

truck.
25The introduction of a scarce resource slows growth in the laissez-faire equilibrium, as is shown in the extended appendix.
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The resource stock Ft must be non-negative for any t. Therefore total extraction must not exceed the initial

stock F0, a requirement which is formally represented in the condition∫ ∞
0

Rtdt ≤ F0. (18)

Suppose that one unit of the intermediate good is produced by one unit of the non-renewable resource so that

Xit = Rit (19)

is resource input in sector i and Xt =
∫ 1
i=0

Xitdi = Rt aggregate resource use in period t. With a finite resource

stock, it is obvious that resource use and therefore intermediate production must ultimately decline to zero in

the long run, both in the socially optimal solution and the laissez-faire equilibrium. There has to be quantity

degrowth.

Lemma 3 If intermediate goods are produced with a non-renewable resource according to equation (19), the

growth rate X̂ of intermediate quantity is negative in the long run. Any solution path is characterized by

quantity degrowth for t→∞.

Proof. It follows from (19), that aggregate resource use is Rt = Xt. Substitution into equation (18) yields∫∞
0
Xtdt ≤ F0. To satisfy the condition, the integral must converge, which requires lim

t→∞
X̂t = X̂∞ < 0 as a

necessary condition.

We now consider the optimal outcome in more detail.26

5.2 Resource scarcity in the long-run social optimum

We first characterize the long-run social optimum in case of a binding natural resource constraint. This case

is commonly studied in related literature (Schou (2000, 2002), Grimaud and Rouge (2008)). The Lagrange-

multiplier λRt for the natural resource constraint reflects the social costs of producing one unit of intermedi-

ates, i.e., the social price of the non-renewable resource. λRt increases over time according to the modified

Hotelling rule

λ̂R = ρ. (20)

While the social price λRt of the non-renewable resource increases with progressing resource scarcity, the

shadow price vSt of pollution moves along with the marginal disutility of pollution on an asymptotically-balanced

growth path27 . The shadow price therefore falls towards vRS∞ = 0 as the stock of the polluting resource gets

exhausted and the pollution stock declines. It is shown in the appendix that in this case, green innovation is

no longer optimal in the long run, i.e.,

bR∞ = B̂R∞ = 0.

However, we have suggested earlier that the natural resource constraint need not be binding in the social

planner’s solution. We know from corollary 1 in subsection 4.3, that the social planner may choose to let

the quantity of intermediates decrease in the long run even if there is no constraint imposed on intermediate

26As before, we focus on balanced and asymptotically-balanced growth solutions.
27Recall the derivation of equation (16) in the appendix.
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production by resource scarcity. More precisely, this is the case if preferences are such that a declining pollution

stock is desired and the factor elasticity of intermediates is particularly small so that quantity degrowth is not

too costly in terms of foregone potential consumption growth. Whenever there is quantity degrowth in the long

run, the integral
∫∞
0
Xtdt converges to a finite value. In the modified setting where intermediates are produced

from a non-renewable resource, the resource constraint is then not binding given that the initial resource stock

is not too small. We prove in the appendix that the long-run optimal solution of the resource model is the same

as in our baseline model without resources.

Proposition 2 ABG-optimum with an exhaustible resource

Assume that intermediates are produced with a non-renewable resource according to equation (19). Assume

further that the path {Xt}∞0 for intermediate quantity is continuous.

There is always quantity degrowth in the long-run optimal solution. Further, the following holds:

(a) Binding resource constraint If the resource constraint is binding, all labor in research and development

is shifted to productivity improvements asymptotically and green innovation comes to a halt (B̂R∞ = 0).

(b) Non-binding resource constraint Given that the conditions for quantity degrowth in the baseline model

(see corollary 1) are satisfied and given a suffi ciently large (but finite) initial resource stock F0, the natural

resource constraint is not binding in the social planner’s problem. There exists an asymptotically unique ABG-

solution which for t→∞ is identical to the ABG-solution with quantity degrowth described in section 4.3. More

precisely, growth in output and consumption is positive, given a suffi ciently small rate of time preference ρ, and

entirely driven by productivity growth. The pollution stock S declines both due to quantity degrowth and because

the pollution intensity of intermediate goods is reduced by green innovation. The orientation of research and

technical change is given by B̂R∞/Q̂
R
∞ = α/(1− α).

Proof. See appendix C.2.

In case of a binding resource constraint, resource scarcity forces the social planner to save on polluting inputs

to such an extent that investing in green innovation to bring about an even faster decline in pollution is not

optimal in the long run. On the other hand, the depletion of the non-renewable resource poses an increasing

threat to economic growth over time. Therefore, asymptotically, green innovation comes to a halt. All labor in

the research sector is shifted towards productivity improvements. Productivity growth raises the productivity of

intermediate goods and thereby dampens the adverse effects from resource scarcity on output and consumption

growth.

With a binding resource constraint, the need to save scarce resources solves the pollution problem. Propo-

sition 2, however, also suggests that under realistic conditions it may be vice versa: The preference for a clean

environment may make it optimal to restrict resource use in a way that the resource stock is never exhausted.

This also means that the inevitable deceleration induced by resource scarcity will not solve the pollution prob-

lem. We have pointed out that the parameter constellations for which there is quantity degrowth in the long-run

optimal solution are well in line with empirical evidence. In particular, quantity degrowth has been shown to

be a likely outcome of the social planner’s optimization problem if the intermediate good is interpreted as

energy input and its production elasticity α as the energy share in GDP. Further, although fossil resources are

effectively bounded, the large stocks particularly of coal still in the ground suggests that the assumption of a

18



finite but large initial resource stock is also realistic. We conclude that without too strong restrictions on the

parameter range, the long-run results from the socially optimal solution of the baseline model extend to a model

with a non-renewable resource.

6 Conclusion

Pollution accumulation in our endogenous growth model can be controlled by green innovation and by reducing

rebound effects from productivity growth on input quantity. The latter goes along with a cost in terms of

foregone potential growth in consumption and GDP which we referred to as ‘deceleration’.

On a BGP, deceleration cannot occur since output, polluting intermediate inputs, consumption and produc-

tivity all grow at the same rate. This means that rebound effects are not restricted. A channel of pollution

control is thus neglected in otherwise related literature focussing on balanced growth. The first contribution

of this paper is to extend the analysis beyond balanced growth paths. This enables us to address the question

of whether and when a deliberate reduction of consumption growth below productivity growth to decrease the

growth of polluting inputs may be socially desirable.

By construction of our model, no growth would generally be socially preferable to the laissez-faire equilibrium

(which exhibits neither green innovation nor deceleration). At the same time, given the possibility of pollution

control, long-run economic growth is a desirable aim from a social planner’s perspective. The second contribution

of this paper is to show that for empirically reasonable parameter values, optimal pollution control involves

green innovation and persistent reduction of rebound effects which requires persistent deceleration. Fostering

productivity growth while investing in green innovation to decrease the pollution intensity of production does not

achieve the optimal balance between consumption and pollution growth. It has to be ensured that productivity

growth does not merely lead to a faster expansion of production: The rebound effect of productivity growth must

be restricted. The model also shows that we cannot rely on resource scarcity to induce suffi cient deceleration

to solve the pollution problem.
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A Appendix to section 3 (Laissez-faire)

The derivation of the laissez-faire equilibrium can be found in an extended appendix to this paper, available

upon request.

A.1 Proof of proposition 1

1. Existence and Uniqueness: Proof of existence and uniqueness follows the proof in the standard Schum-

peterian growth model and is contained in the extended appendix.

2. Welfare comparison: To prove that for convex disutility of pollution, a path without long-run growth

would be welfare-improving, consider the utility function as function of the pollution stock S which is

obtained using (2):

U =

∞∫
0

e−ρt
(

σc
σc − 1

c
σc−1
σc

t − ψ σE
1− σE

S
1−σE
σE

t

)
Ldt (A.1)

For convex disutility of pollution (σE < 1/2), 1−σEσE
is at least one while σc−1

σc
is smaller than one. Along

the balanced-growth path, ŜLF = ŜLF∞ = ĉLF . Instantaneous utility ut = σc
σc−1c

σc−1
σc

t − ψ σE
1−σE S

1−σE
σE

t

converges to −φS(St) = −ψ σE
1−σE S

1−σE
σE

t and declines persistently towards (−∞). The long-run growth

rate is 1−σE
σE

ŜLF∞ . Now assume instead that economic growth is given up in a period s: Consumption

growth drops to zero instantly while pollution growth converges to zero over time. Initially, there is a loss

in per-period-utility compared to the laissez-faire equilibrium. This loss is only transitory: In the long-

run, the pollution stock is constant and so is utility, while utility decreases in the laissez-faire equilibrium.

Therefore, from a certain time onwards, not growing yields a utility-gain in each period which increases

as t→∞. Because of the concavity of the utility from consumption and convexity of the disutility from

pollution, the transitional welfare-loss is smaller, the later in time the regime-switch occurs and converges

to zero as s→∞. Giving up economic growth in the long-run therefore yields an increase in intertemporal
welfare.

B Appendix to section 4 (Social Planner)

B.1 Maximization problem

To see that the optimal qit and bit are the same for all sectors i, i.e. qit = qt and bit = bt, note that the social

planner chooses the step-size in every sector i so as to reach a given rate of change
·
Qt and

·
Bt in the respective

aggregate technology level with a minimum labor investment. From the equations of motion (12) and (13) for

Q and B together with the R&D-cost function (9) we can conclude that the marginal gain of an increase in bi

and qi, in terms of faster technological progress, and the additional amount of labor required increase in the

sectorial technology levels Qit and Bit in the same way. Therefore sectorial differences are irrelevant for the

optimal choice of qi and bi.
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The dynamic optimization problem then depends on aggregate variables only: From (9), with
1∫
0

Qitdi = Qt,

1∫
0

Bitdi = Bt and nit = nt, the amount of labor allocated to research in period t is LDt = nt(q
2
t + b2t + d).

To produce Xt units of intermediates requires LXt = 1
ϕ
Xt
Qt
units of labor. The labor market constraint can be

written as

L =
1

ϕ

Xt

Qt
+ LY t + nt(q

2
t + b2t + d). (B.1)

The equations of motion (12) for Q and (13) for B are:

·
Qt = µnqtQt (B.2)

·
Bt = µnbtBt (B.3)

Given aggregate intermediate productionXt the decision overXit is static. The planner optimally allocates a

higher share of aggregate intermediate production to the sectors with higher productivity level so as to maximize

Yt. The optimal Xit is:

Xit = Xt
Qit
Qt

(B.4)

With (B.4), the aggregate resource constraint can be rewritten as:

L1−αY t Xα
t Q

1−α
t = ctL (B.5)

The dynamic maximization problem is solved by finding the optimal paths for Q, B, S, c, X, LY , n, q and

b subject to (8), (B.1), (B.2), (B.3) and the resource constraint (B.5). The current-value Hamiltonian is given

by:

H =

(
σc

σc − 1
c
σc−1
σc

t − ψ σE
1− σE

S
1−σE
σE

t

)
L

+vSt

(
Xt

Bt
− δSt

)
+vQtµntqtQt

+vBtµntbtBt

+λY t
(
Xα
t Q

1−α
t L1−αY t − ctL

)
+λLt(L−

1

ϕ

Xt

Qt
− LY t − nt(q2t + b2t + d))

where vSt, vQt and vBt are the shadow-prices of St, Qt and Bt respectively and λY t and λLt are Lagrange-

multipliers.
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B.2 First-order conditions

The first-order conditions are:

∂H

∂ct
= 0⇔ λY t = c

−1/σc
t (B.6)

∂H

∂Xt
= 0⇔ vSt

Bt
+ λY tαX

α−1
t L1−αY t Q1−αt − λLt

1

ϕQt
= 0 (B.7)

∂H

∂qt
= 0⇔ vQtµntQt = 2λLtntqt (B.8)

∂H

∂bt
= 0⇔ vBtµntBt = 2λLtntbt (B.9)

∂H

∂nt
= 0⇔ vQtµqtQt + vBtµbtBt = λLt

(
q2t + b2t + d

)
(B.10)

∂H

∂LY t
= 0⇔ λY t(1− α)Xα

t Q
1−α
t L−αY t = λLt (B.11)

∂H

∂St
= ρvSt −

·
vSt ⇔ −ψS(1−2σE)/σEt L− δvSt = ρvSt −

·
vSt (B.12)

∂H

∂Qt
= ρvQt −

·
vQt

⇔ vQtµntqt + λY t(1− α)Xα
t Q
−α
t L1−αY t + λLt

Xt

ϕ

1

Q2t
= ρvQt −

·
vQt (B.13)

∂H

∂Bt
= ρvBt −

·
vBt ⇔ −vSt

Xt

B2t
+ vBtµntbt = ρvBt −

·
vBt (B.14)

∂H

∂vSt
=

·
St ⇔

Xt

Bt
− δSt =

·
St (B.15)

∂H

∂vQt
=

·
Qt ⇔ µntqtQt =

·
Qt (B.16)

∂H

∂vBt
=

·
Bt ⇔ µntbtBt =

·
Bt (B.17)

∂H

∂λY t
= 0⇔ Xα

t Q
1−α
t L1−αY t = ctL (B.18)

∂H

∂λLt
= 0⇔ L =

1

ϕ

Xt

Qt
+ LY t + nt(q

2
t + b2t + d) (B.19)

Further, the transversality conditions lim
t→∞

(e−ρtvQtQt) = lim
t→∞

(e−ρtvBtBt) = lim
t→∞

(e−ρtvStSt) = 0 as well as

the non-negativity constraints Qt, Bt, St, ct, Xt, LY t, nt ≥ 0, ∀t must hold.
From the first-order conditions, four key equations crucial for the determination of the long-run optimum are

derived: The condition (16) for asymptotically-balanced growth in the text follows from the first-order conditions

for X and S: The first-order condition (B.7) for X yields a relation v̂S∞ = (1− 1/σc) ĉ∞ + B̂∞ − X̂∞ between

the growth rates of the marginal utility c−1/σct of consumption and the shadow price vS of pollution for t→∞.
From the first-order condition (B.12) for the pollution stock, it follows that along an ABG path, the ratio

S
(1−2σE)/σE
t /vSt must be constant for vS to grow at a constant rate. In the long run, vS must therefore grow at

the same rate as the (instantaneous) marginal disutility ψS(1−2σE)/σE of pollution, v̂S∞ = ((1− 2σE) /σE) Ŝ∞.

Setting equal with the expression for v̂S∞ obtained from (B.7) and rearranging, taking into account that

Ŝ∞ = X̂∞ − B̂∞ under condition (15), yields (16) in the proof of lemma 2.

We are interested in solution candidates with n∞ > 0. Solving (B.8) and (B.9) for vQ and vB respectively,
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substituting in the first-order condition (B.10) for n and taking the limit for t→∞ yields

q2∞ + b2∞ = d (B.20)

Condition (B.20) is an indifference condition. It guarantees that the social planner is indifferent between all

possible values for n.

Dividing by vQt, setting t =∞ and rearranging, (B.13) can be written as:

(1/σc) ĉ∞ + ρ =
1

2
µq−1∞

(
LY∞ +

1

ϕ

(
X

Q

)
∞

)
+ αX̂∞ + (1− α)µn∞q∞ (B.21)

Equation (B.21) is a version of the consumption Euler-equation, where we replaced the shadow-prices and

Lagrange-multipliers as well as their growth rates using (B.8), (B.11) and (B.6).

Both research directions, that is, increasing Q and increasing B, must yield the same social net return. We

manipulate the first-order condition (B.14) for B similarly to the one for Q, using (B.9) as well as the expression

vSt =
(
λLt

1
ϕQt
− λY tαXα−1

t L1−αY t Q1−αt

)
Bt from (B.7), and equations (B.11) and (B.6). Setting equal the right-

hand sides of (B.21) and the modified first-order condition for B, we obtain the research-arbitrage condition

1

2
µq−1∞

(
LY∞ +

1

ϕ

(
X

Q

)
∞

)
=

1

2
µb−1∞

(
α

1− αLY∞ −
1

ϕ

(
X

Q

)
∞

)
. (B.22)

B.3 Proof of theorem 1

If growth rates are to be constant asymptotically, equation (B.22) requires intermediate quantity in effi ciency

units, more precisely the ratio (X/Q)∞, to be constant in the limit as well.

A balanced growth path, along which productivity and cleanliness grow at constant rates not only asymp-

totically, must be characterized by a strictly positive (X/Q)∞
28 . There must therefore be equal growth in

intermediate quantity, productivity and (from the resource constraint) also consumption. Equation (16) then

yields a ratio B̂∞/Q̂∞:

B̂∞/Q̂∞ = 1− (σc − 1) /σc
(1− σE) /σE

. (B.23)

If α/(1 − α) < 1 − (σc−1)/σc
(1−σE)/σE (see (14)), a balanced growth solution to the social planner’s problem does not

exist, because the ratio B̂∞/Q̂∞ in (B.23) is not reconcilable with equation (B.22) for any nonnegative (X/Q)∞.

As X/Q < 0 has no sensible interpretation, the optimal solution is to let X/Q converge to zero asymptotically

by choosing X̂∞ < Q̂∞. According to (B.22), the optimal ratio B̂∞/Q̂∞ corresponds to

B̂∞/Q̂∞ =
α

1− α . (B.24)

With the definition of the direction of technical change, it follows straightforwardly that technical change is

green (productivity-oriented) if and only if α > 1/2 (α < 1/2).

To compute the relation between the growth rates X̂∞ and Q̂∞, we use (16), substituting X̂∞ − B̂∞ =

X̂∞ − α
1−α Q̂∞ for Ŝ∞ and αX̂∞ + (1− α) Q̂∞ from the resource constraint for ĉ∞. After some manipulation,

28On a balanced growth path, (X/Q)∞ = 0 implies Xt/Qt = 0 for all t. This is only possible if Xt = ct = 0 for all t which

cannot be an optimal path for X because the utility function satisfies the Inada-conditions for ct.
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we obtain:

X̂∞ =
1 +

(
α
1−α

)2
−
(

1− (σc−1)/σc
(1−σE)/σE −

α
1−α

)
1 + α

1−α

(
1− (σc−1)/σc

(1−σE)/σE

) Q̂∞ (B.25)

For α
1−α < 1− (σc−1)/σc

(1−σE)/σE , it is obvious that X̂∞ < Q̂∞ given Q̂∞ > 0.

The proof of uniqueness is contained in the extended appendix.

B.4 Proof of corollary 2

See the extended appendix.

C Appendix to section 5.2

(Optimum with a non-renewable resource)

C.1 First-order conditions

Three changes occur in the set of necessary first-order conditions compared to the baseline model: First, the

shadow price λR of the non-renewable resource contributes to the marginal social cost of intermediate production

instead of the marginal labor requirement, so that the first-order condition for X becomes

∂H

∂Xt
= 0⇔ vSt

Bt
+ λY tαX

α−1
t L1−αY t Q1−αt − λRt = 0. (C.1)

In the first-order condition (B.13) for Q, the last term on the left-hand side (λLt (1/ϕ)
(
Xt/Q

2
t

)
drops out

because Q no longer affects the production of intermediate goods.

Second, the first-order conditions are complemented by a complementary slackness condition:

∂H

∂λRt
≤ 0⇔ F0 −

∫ ∞
0

Xtdt ≥ 0 λRt ≥ 0 λRt

(
F0 −

∫ ∞
0

Xtdt

)
= 0 (C.2)

Third, labor is only allocated to research and output production. The first order condition for λLt changes to:

∂H

∂λLt
= 0⇔ L = LY t + nt(q

2
t + b2t + d) (C.3)

The set of first-order conditions is otherwise unaffected by the modifications in the model setup.

C.2 Proof of proposition 2

C.2.1 (a) Binding constraint

(i) Quantity degrowth: If there is quantity degrowth, S∞ = 0 so that vS∞ = 0, while λR grows persistently.

To satisfy the first-order condition (C.1) for X, the social marginal product of X in production must equal

λR asymptotically:

c−1/σc∞ αXα−1
∞ L1−αY∞Q

1−α
∞ = λR∞ (C.4)

Note that we already substituted λY = c
−1/σc
∞ from the first-order condition for c. Condition (C.4)

replaces condition (16) for asymptotically-balanced growth from the baseline model. Computing growth
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rates on both sides of (C.4) yields (−1/σc · ĉ∞) − (1 − α)
(
X̂∞ − Q̂∞

)
= ρ. From this equation, using

ĉ∞ = αX̂∞ + (1− α)Q̂∞, we derive the growth rate X̂R
∞ for any given Q̂R∞:

X̂R
∞ =

1
α
1−α

1
σc

+ 1

((
1− 1

σc

)
Q̂R∞ −

1

1− αρ
)

(C.5)

If σc < 1, it can be seen directly that X̂R
∞ < 0. For σc > 1 the transversality conditions, which require

ρ >
(

1− 1
σc

)
Q̂R∞, together with (1− α) < 1 guarantee that indeed X̂R

∞ < 0.

(ii) Green Innovation: The research-arbitrage equation is:

µ

2q∞
LY∞ =

µ

2b∞
LY∞

(
α

1− α −
1

1− α

(
λR
λY

)
∞

(
X

Q

)1−α
∞

Lα−1Y∞

)
(C.6)

Substituting (C.4) in (C.6) shows that investing in the cleanliness of technology is not optimal in the long

run:

µ

2b∞
LY∞

(
− α

1− α +
α

1− α

)
= (ρ− (1− 1/σc) ĉ∞)

⇔ bR∞ = 0

From q2∞+b2∞ = d it follows that qR∞ =
√
d so that labor in the R&D-sector is entirely used for productivity-

oriented innovation.

C.2.2 (b) Unbinding constraint

Given the assumption of continuity of the path for X, the integral
∫∞
0
Xtdt converges if there is quantity

degrowth in the long run (see the extended appendix). Therefore
∫∞
0
Xtdt < F0 for a suffi ciently large F0. In

this case, the natural resource constraint is not binding and it follows from (C.2) that λRt = 0, ∀t. If λR = 0,

differences in the first-order conditions compared to the baseline model only arise because labor is no longer

used in intermediate production in the model of this section. But for parameter constellations such that there is

quantity degrowth in the baseline model, labor use in intermediate production converges to zero in the baseline

model as well, so that the first-order conditions and therefore the long-run solutions are identical for t→∞.
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